Название реферата: Анализ систем автоматического управления
Раздел: Коммуникации, связь и радиоэлектроника
Скачано с сайта: www.refsru.com
Дата размещения: 04.08.2012
Анализ систем автоматического управления
1.Исследование линейной непрерывной системы автоматического управления
Задание:
1) Найти передаточную функцию разомкнутой системы W(s) и передаточную функцию замкнутой системы Ф(s), ;
2) Построить область устойчивости системы в плоскости общего коэффициента передачи К = К1К2К3 и постоянной времени Т2 при заданных значения Т1 и Т3. Найти граничное значение при заданном значении Т2, при котором система выходит на границу устойчивости.
3) Построить графики логарифмических амплитудной и фазовой частотных характеристик L(w) и φ(w) при значении коэффициента передачи K=0,7K’.
4) Оценить запасы устойчивости по модулю ∆L и фазе ∆ φ, величину ошибки по скорости еск при v(t) = v1t и f= 0, время переходного процесса tp и перерегулирование σ в исходной системе при K=0,7K’.
5) Если исходная система не удовлетворяет заданным в таблице 1 показателям качества tp, σ, еск (хотя бы одному из них) или имеет малые запасы устойчивости, то провести коррекцию системы (последовательного или параллельного типа) и найти передаточную функцию корректирующего устройства.
6) Вычислить в скорректированной системе переходный процесс на выходе y(t) при подаче на вход единичной ступенчатой функции v(t)=1(t)( f= 0). Найти tp, σ по переходному процессу и сравнить их с требуемым по заданию.
Исходные данные:
Структура исследуемой замкнутой линейной непрерывной САУ представлена на рис. 1.1, где v(t)- управляющее воздействие, (f)- возмущающее воздействие, е(t)- сигнал ошибки, y(t)- выходной сигнал. Значения параметров Т1 Т2, Т3 заданы в табл. 1. Размерность Т1 Т2, Т3 в секундах, общий коэффициент передачи К = К1К2К3 имеет размерность 1/с, в табл. 1 заданы также желаемые показатели качества системы: максимальная ошибка по скорости еск при скачке по скорости v(t) = v1t и f= 0, время переходного процесса tп.п в секундах, и перерегулирование у в процентах.
Таблица 1. Структура исследуемой замкнутой линейной непрерывной САУ
Номер варианта |
v1 |
еск |
tп.п |
σ |
Т1× |
Т2× |
Т3 |
10 |
1,4 |
0,04 |
2,5 |
10 |
0,33 |
1,9 |
5 |
Рисунок 1.1
Выполнение:
1. Требуемые передаточные функции находят с использованием правил структурных преобразований. Коротко сформулируем основные правила:
— Передаточные функции последовательно соединенных звеньев перемножаются.
— Передаточные функции параллельно соединенных звеньев складываются.
Передаточная функция системы с обратной связью - это передаточная функция замкнутой системы, которая определяется по формуле:
(по условию)
Передаточная функция разомкнутой системы W(s) = Y(s)/U(s) при f= 0, e = u (т.е. разомкнута главная обратная связь) определится выражением:
где обозначим К = К1К2К3,
0,03135
1,12127
5,223
Главная передаточная функция или передаточная функция замкнутой системы при f = 0:
Передаточная функция по ошибке при f= 0, которая позволяет выразить ошибку e(t) в системе при известном входном воздействии:
Передаточная функция по возмущению при и = 0 позволяет выразить влияние возмущения на выходной сигнал:
2. . Передаточная функция разомкнутой исходной системы имеет вид W(s) = K/sL(s), где L(s) = (T1s+1)(T2s +1)(T3s+1). Характеристическое уравнение замкнутой системы будет D(s) = K+L(s)s = b0s4 +b}s3 +b2s2 +b3s + b4 =0, где при заданных из таблицы исходных данных числовых значениях Т1 и Т3 коэффициенты bj будут зависеть от параметров К и Т2. Применение критерия Гурвица к характеристическому уравнению четвертого порядка дает следующие условия устойчивости:
b3(b1b2-b0b3)-b4b12 > 0, b, > 0, i = 0, .,4.
Приравнивая в написанных соотношениях правые части нулю, найдем зависимость К от Т2 и построим в плоскости К и Т2 границы устойчивости, ограничивающие некоторую область устойчивости. При заданном параметре Т2 находим граничное значение КГР коэффициента передачи К.
К = К1К2К3
b0==0,165
=с0
5,033
с0
b3=1 b4=K
Выразим К через параметр Т2:
Зависимость К(Т2) приведена на рис. 1.2
Рис.1.2
Kгр=KT2=0.19=4,633
3. Полагая К = 0.7КГР, записываем аналитическое выражение для φ(w)= argW(jw), L(w) = 20lg|W(jw)| из W(s) при s = jw.
К=0.7Кгр= 3,243
Передаточную функцию разомкнутой системы можно записать в виде:
где
тогда:
где
Строим графики логарифмических характеристик разомкнутой системы, с помощью MATLAB (оператор bode или margin) Рис. 1.3 а.
Рис. 1.3а
Строим график АФЧХ с помощью MATLAB (оператор nyquist) рис. 1.3 б для разомкнутой системы.
Рис 1.3 б
Запасы устойчивости по модулю и фазе определяются по логарифмическим характеристикам (см. рис. 1.3 а): на частоте среза wс определяется запас по фазе —∆φ, а запас по амплитуде ∆L - на частоте при которой φ(w) = -180. Таким образом, ∆L≈0. 1дБ, ∆φ≈ 0°, что является недостаточным.
4. Величина ошибки по скорости определяется как eск=V1/K. Для ориентировочной оценки tпп и σ следует построить переходной процесс h(t) (оператор step в MATLAB) при v(t) = 1[t] и по нему определить tпп и σ.
Для получения уравнений состояний в нормальной форме используем дифференциальное уравнение замкнутой системы
D(s)y(t)=Kv(t). Если D(s)=b0s4+b1s3+b2s2+b3s+b4=0, ,то уравнение состояния имеет вид
Для описания динамических систем в пространстве состояний в Matlab применяются модели подкласса ss, которые основаны на линейных дифференциальных или разностных уравнениях.
Модель непрерывной системы в подклассе ss имеет вид:
где: х - вектор состояния; v- вектор входа; у - вектор выхода.
Для формирования моделей в подклассе ss предназначена функция ss
sys=ss(A,B,C,D)
В результате под именем sys получаем ss-объект с числовыми характеристиками в виде четверки матриц {А, В, С, D}, которые должны иметь согласованные размеры. Матрицу D в данном случае полагаем равной 0.
Для построения переходного процесса h(t) воспользуемся оператором step в MATLAB.
Реализация функций имеет вид:
sys=ss([0 1 0 0;0 0 1 0;0 0 0 1;-b4/b0 -b3/b0 -b2/b0 -b1/b0],[0 0 0 K/b0]', eye(4), zeros(4,1))
a =
x1 x2 x3 x4
x1 0 1 0 0
x2 0 0 1 0
x3 0 0 0 1
x4 -104.6 -32.26 -168.5 -36.16
b =
u1
x1 0
x2 0
x3 0
x4 104.6
c =
x1 x2 x3 x4
y1 1 0 0 0
y2 0 1 0 0
y3 0 0 1 0
y4 0 0 0 1
d =
u1
y1 0
y2 0
y3 0
y4 0
Continuous-time model.
>> step(sys)
В результате получим графики представленные на рис. 1.4. Нас будетинтересовать Out(l). Величина ошибки по скорости определяется как:
еск=V1/K = 1,4/3,243 = 0,432>ескзад = 0,04.
Для ориентировочной оценки tnn и о следует построить переходной процесс h{t) (оператор step в MATLAB) при v(t)=1(t) и по нему определить tпп и σ. Эти величины из графика Out(l) определяются следующим образом:
Время переходного процесса определяется с учетом следующих соотношений: εуст=v(t)/(l+K), где v(t)=l[t], а К=3,243 - общий коэффициент передачи разомкнутой системы. Тогда еуст= 1/(1+3,243)=0,236 и следовательно tпп из графика Out(l) tпп ≈50с > tппзад = 2.5с.
Рис 1.4
Таким образом, исходная система не удовлетворяет заданным показателям качества, ее следует скорректировать.
5. Если исходная система не удовлетворяет заданным показателям качества, ее следует скорректировать. В случае применения частотных методов синтеза коррекции строится желаемая ЛАЧХ Lж(w). В низкочастотной части желаемой ЛАЧХ при сохранении порядка астатизма (наличие интегратора 1/s в системе) требуемый коэффициент усиления выбирается из соотношения Kz=v1/eск=1,4 / 0.04 = 35. На частоте среза желательно иметь наклон ЛАЧХ -20 дБ/дек с протяженностью этого участка не менее одной декады. Далее среднечастотная часть ЛАЧХ сопрягается с низкочастотной отрезком прямой с наклоном -40(если необходимо -60) дБ/дек, а высокочастотная часть желаемой и исходной ЛАЧХ по возможности должны совпадать.
Учет требований качества переходного процесса: tпп и σ, запасов устойчивости учитываются при формировании среднечастотной области Lж(w). Здесь можно воспользоваться графиком (рис. 1.5).
Рис 1.5
По графику рис. 1.5 для заданных значений у и tnn находим wп, и затем из соотношения wc = (0.6 - 0.9) wп, частоту среза wc.
В наше случае: (как показано на рис.1.5) для у =10%, tр=3π/ωп ,откуда для tр значение ωп= 3π/1,5=6,8 1/с и ωc=5 1/с.
Сопряжение среднечастотного участка с низкочастотным и высокочастотным (рис. 1.6) должно быть таким, чтобы была проще коррекция и чтобы изломы, по возможности, были не более чем на 20 дБ/дек (протяженность участка около декады). Тогда, выберем L2≈10дБ на частоте ω2=(0.1-0.5)ωс=2.5<ωс=5 и L3≈ -10 дБ на частоте ω3=25 ≥ ωс=5. Введем обозначения:
Величину ω1 найдем из условия равенства значений Lж(ω1)=Lисх(ω1). Это
соотношение приводит к следующему выражению:
В последнем выражении обозначено:
ω’=0.1w2
L’(ω’)=50 дБ
L’(ω2)=10 дБ
L(ω3p)=L(0.476)=21,18 дБ
L(ω2)=L(1.2)=-35,743 дБ
Последние две величины находятся из выражения для Lисх(w).
Найденное по формуле значение ω1=0.098
ЛАЧХ корректирующего устройства с характеристикой Lk(w) соответствует функция:
где:
Общая передаточная функция разомкнутой системы с корректирующим звеном последовательного типа имеет вид:
Далее воспользуемся функцией zpk(z, р, К), где z и р - векторы из нулей и полюсов, a Kd - обобщенный коэффициент передачи, sys - любое имя присваиваемое модели. Тогда запись в системе Matlab примет вид:
sys1=zpk([-1/t2k -1/t3k],[0 -1/t1 -1/t2 -1/t3 -1/t1k -1/t4k],kd)
Zero/pole/gain:
58.2 (s+2.5) (s+0.4762)
-------------------------------------------------
s (s+7.143) (s+4.167) (s+25) (s+0.4762) (s+0.097)
Рис. 1.6
6. Для нахождения переходных характеристик замкнутой системы с корректирующим звеном предварительно сформируем модель в пространстве состояний. Передаточная функция замкнутой системы имеет вид:
Для нахождения Ф(s) воспользуемся следующей последовательностью команд:
>>sys1=zpk([-1/t2k -1/t3k],[0 -1/t1 -1/t2 -1/t3 -1/t1k -1/t4k],kd)
Zam_ck=inv(l+sysl)*sysl - находится передаточная функция замкнутой системы. (Не оптимальная форма т.к. при такой последовательности команд не производится упрощение за счет сокращения одинаковых элементов числителя и знаменателя. В тоже время на результат дальнейшего расчета это не влияет).
>>Zam_ck=inv(1+sys1)*sys1
Переходная характеристика (рис. 1.7 ) находится с помощью функций: 0,05
Из рассмотрения рис. 1.7 видно, что параметры по заданию выполняются.
Рис 1.7
Для устранения неоптимальности записи в Zam_ck=inv(l+sysl)*sysl можно в диалоговом режиме произвести новую запись zpk(.) - сокращая одинаковые элементы числителя и знаменателя в Zam_ck.
2.Исследование линейной импульсной системы автоматического управления
Задание:
1) Найти передаточные функции импульсной САУ: W*(z) разомкнутой системы, Ф*(z) – замкнутой системы, Фе*(z) – системы по ошибке. Параметры Т, Т1, τ1, К0, γ входят в выражения передаточных функций в общем виде, т. е. в буквенном виде. Знак «*» будет относиться к передаточным функциям импульсной системы.
2) Найти интервал изменения коэффициента передачи К0, при котором система будет устойчива: K0”≤K0≤K’. Для дальнейших исследований выбрать значение K0=0.5K0’
3) Построить графики логарифмических частотных характеристик разомкнутой импульсной системы L*(λ) и φ*(λ) при заданных значениях Т, Т1, τ1, γ и выбранном K0. По графикам определить запасы устойчивости системы по модулю ∆L* и фазе ∆φ*.
4) Определить ошибку системы по скорости еск при входном воздействии v(t)=t (скачок по скорости), а также первые два коэффициента ошибок с0 и с1.
5) Вычислить переходной процесс в системе при воздействии v(t)=1[t] (скачок по положению.
Исходные данные:
Таблица 2. Анализ одноконтурного замкнутого импульса
Номер варианта |
γ |
T |
T1 |
τ1 |
10 |
0.3 |
0.1 |
0.1 |
0,05 |
Анализируется одноконтурная замкнутая импульсная САУ, состоящая из непрерывной части (НЧ) и импульсного элемента (ИЭ), формирующего прямоугольные импульсы длительностью τ=γТ, где Т -период дискретизации, 0≤γ≤1. Исходные данные для расчетов приведены в таблице 2. Передаточная функция непрерывной части имеет вид:
Импульсный элемент представляется в виде идеального ключа и формирующего устройства с передаточной функцией:
Структурная схема системы представлена на рис. 2.1. В табл. 2 Т, Т1, τ -постоянные времени имеют размерность секунды, К0 - коэффициент передачи НЧ имеет размерность сек-1 и выбирается далее.
Рис 2.1 Структурная схема линейной импульсной системы
1. Для нахождения передаточной функции разомкнутой импульсной САУ W*(z) находим передаточную функцию приведенной непрерывной части:
К W(s) применяется Z-преобразование и получается передаточная функция импульсной системы W*(z) = Z{W (s)}. Преобразуем W0(s) к виду:
Представим W0(s) в виде суммы двух слагаемых
Применим к W0(s) Z-преобразование
Полученную передаточную функцию в конечном виде можно представить следующим образом:
где обозначено
Передаточные функции замкнутой системы находятся по выражениям:
2. Устойчивость системы определяется корнями характеристического уравнения замкнутой системы D*(z) = l + W*(z) = 0, которое для нашего случая будет иметь вид:
В соответствии с алгебраическим критерием замкнутая система будет устойчива при выполнении неравенств
В неравенстве при известных значениях γ, Т, τ1, Т1 входит величина К0. Таким образом, можно выделить отрезок значений К0"<К0 <К0, при которых система будет устойчива и далее принять К0 = 0.5К'0. Условия устойчивости будут:
После преобразований и возврата к старым переменным получим:
Получим 0<К0<7,112. Таким образом, принимаем К0=0.5 К0’=3,56.
1. Для построения частотных и логарифмических частотных характеристик в выражении W* (z) делаем замену переменной
В результате этого получим частотную характеристику W*(jλ) и далее логарифмическую амплитудно-частотную характеристику L*(λ) = 20Lg|W*(jλ)| и фазочастотную характеристику φ*(λ)= argW*(jλ), графики которых строятся в логарифмическом масштабе.
Передаточная функция разомкнутой системы имеет вид
Тогда можно воспользоваться следующей последовательностью команд в MATLAB:
>> sys=tf([0.231 0.085],[1 -(1/2.71+1) 1/2.71],1)
Transfer function:
0.231 z + 0.085
---------------------
z^2 - 1.369 z + 0.369
>> sys_tr=d2c(sys,'tustin')
Transfer function:
-0.05332 s^2 - 0.1242 s + 0.4616
--------------------------------
s^2 + 0.9218 s + 2.047e-016
(опция 'tustin’ предназначена для преобразования )
Получаем выражение:
где параметры g и f видны из вышеприведенного выражения.
Рис 2.2
4. Рассматриваемая система для всех вариантов является астатической с астатизмом первого порядка и имеет следующую передаточную функцию:
В силу астатизма первого порядка в такой системе статическая ошибка всегда равна нулю, а скоростная еск вычисляется по формуле:
и следовательно, еск=1,999.
Вычислим коэффициенты ошибок. Величина С0 =0, а коэффициент ошибки
Где передаточная функция системы по ошибке.
Тогда получим производную:
Подставив в последнее выражение найденные ранее значения и z=1, окончательно получим С1=1,999.
5. При входном воздействии вида v(k) = l[k] переходный процесс в замкнутой системе можно вычислить с помощью моделирования импульсной системы в Matlab. Для этого необходимо задать передаточную функцию непрерывной части системы в tf- или zpk -форме, преобразовать ее в дискретную с помощью оператора c2d при заданном времени дискретизации T, а затем построить переходной процесс системы оператором step. Так же можно построить и логарифмические частотные характеристики импульсной системы -bode. Если задана передаточная функция замкнутой системы в виде:
и периодом дискретизации γT, то получим
>> w0=tf([0.3 1 0],[0.3 1 1.411]) Transfer function:
0.1 s^2 + s
-------------------
0.1 s^2 + s + 3.738
0.2
>> w1=c2d(w0,0.24)
Transfer function:
z^2 - 0.8801 z - 0.1199
------------------------
z^2 - 0.4001 z + 0.09072
Sampling time: 0.24
>> step(W1)
Рис 2.3
На рис.2.4 представлена диаграмма Боде исследуемой дискретной системы с отмеченными на ней запасами устойчивости по амплитуде и фазе.
Рис. 2.4
3.Исследование нелинейной непрерывной системы автоматического управления
Задание:
Используя метод гармонической линеаризации нелинейного элемента, определить на основе частотного способа возможность возникновения автоколебаний в замкнутой системе, их устойчивость, амплитуду и частоту.
Исходные данные:
Структура нелинейной САУ представлена на рис. 3.1, где НЭ— нелинейный элемент, W(s) - передаточная функция непрерывной линейной части системы.
Рис 3.1
1. Передаточная функция W0(s) берется из пункта 1, как передаточная функция скорректированной системы с соответствующими числовыми коэффициентами. Нелинейный элемент НЭ имеет нелинейную характеристику u=f(e) которая для всех заданий является характеристикой идеального реле:
где с=2.
Приближенная передаточная функция нелинейного элемента для случая идеальное реле имеет вид:
где a – амплитуда искомого периодического режима, а>0.
2. На комплексной плоскости строим характеристику:
Это прямая, совпадающая с отрицательным отрезком действительной оси, вдоль которой идет оцифровка по амплитуде а0 = 0, a1, a2, …. В том же масштабе на комплексной плоскости строится АФЧХ разомкнутой системы W0(jw) при изменении частоты от 0 до + inf.
Передаточная функция скорректированной системы:
На рис.3.2 (выделен интересующий фрагмент) пунктиром отмечена АФЧХ
рис.3.2
Точка пересечения кривых (-0,165; -0j).
В точке пересечения АФЧХ W0(jw) и прямой по графику W(jw) находятся частота искомого периодического (гармонического) режима w=w*, а на прямой
в точке пересечения его амплитуда а = а*. Тогда в системе существуют периодические колебания:
Приравнивая Im(W0(jw))=0 находим w*=1,065 (функция fsolve). При найденном значении частоты получим Re(W0(jw*))=-1,3. Из условия Re(W0(jw*))=находим а*=0.41.
Для определения устойчивости периодического режима можно воспользоваться следующим правилом: если при увеличении амплитуды а вдоль кривой пересечение АФЧХ W0(jw) происходит «изнутри наружу», то такой периодический режим будет устойчивым, т.е. в системе существуют автоколебания с частотой w* и амплитудой а* .
Таким образом, периодический режим будет устойчивым.
Литература
1. Теория автоматического управления. Конспект лекций: В 2ч. Ч.1:
Линейные непрерывные системы : учеб.-метод. Пособие /В.П.Кузнецов,С.В.Лукьянец,М.А.Крупская.-Мн.:БГУИРб2007.-132с.
2. Кузнецов В.П. Линейные непрерывные системы: Тексты лекций по курсу: Теория автоматического управления.-Мн.:БГУИР,1995.-180с.
3. Электронный учебно-методический комплекс: Теория автоматического управления. Ч.1: Линейные непрерывные системы./ В.П. Кузнецов, С.В. Лукьянец, М.А. Крупская- Мн.:БГУИРб2006.
4. Электронный учебно-методический комплекс: Теория автоматического управления. Ч.2:Дискретные,нелинейные, оптимальные и адаптивные системы /С.В. Лукьянец, А.Т.Доманов,В.П.Кузнецов.М.А.Крупская-Мн.:БГУИР,2007.
5. Кузнецов А.П. Линейные импульсные системы: Математическое описание: Тексты лекций по курсу «Теория автоматического управления»б-Мн.:БГУИР,1996.-70с.