Становление первичных экосистем. Характер взаимодействия организмов на ранних этапах эволюции жизни

С возникновением фотосинтеза в атмосферу Земли начал поступать кислород. Подсчитано, что благодаря фотосинтезу вся углекислота планеты – и в атмосфере, и растворенная в воде – обновляется примерно за 300 лет, а весь кислород – за 2 тысячи лет. Теперешнее содержание кислорода в атмосфере (21%) было достигнуто около 250 миллионов лет назад в результате интенсивного развития наземных растений. >Итак, мы видим, что в результате фотосинтеза образовалась так называемая вторичная атмосфера Земли с высоким содержанием кислорода. Первичная была наполнена ядовитыми газами, в частности, углекислым. В дальнейшем развитие жизни шло по пути совершенствования кислородного обмена, ибо кислород – очень активный газ. Он быстро окисляет многие вещества, а значит, и ускоряет биохимические реакции, происходящие в живых организмах.

Возникшие одноклеточные организмы продолжали совершенствоваться. Некоторые из них, объединяясь, стали жить колониями. Объединение давало возможность успешно осуществлять различные жизненные функции. В колонии как прообразе многоклеточного организма клетки начинают специализироваться: одни реагируют на свет, другие отвечают за процессы размножения.

Первые многоклеточные организмы возникли путем объединения одноклеточных. Это был следующий великий этап в развитии жизни. Многоклеточные морские организмы развивались и совершенствовались дальше. Одни из них осели на дно и прикрепились к нему (первые водоросли и кораллы). Другие построили себе домик-раковину, которую стали всюду таскать за собой для защиты от врагов. Третьи стали совершенствоваться в плавании, ползании по дну (первые медузы). Жизнь бурно развивалась и совершенствовалась.

3. Эволюция ферментных систем и отбор

Организация протобионтов должна была послужить исходной точкой для их дальнейшей эволюции на пути становления жизни. Главным в этой организации являлось то, что протобионты были не только динамически устойчивыми системами, не только могли неопределенно долго сохраняться в «первичном бульоне», получая вещества. И энергию из окружающей их внешней среды, но что они при определенном сочетании совершавшихся в них реакций обладали способностью увеличиваться в объеме и весе, расти наподобие построенных нами коацерватных моделей. При этом росте протобионты сохраняли до известной степени неизмененными присущие им формы организации. В частности, при синтезе все новых и новых полимерных молекул постоянству состава разрастающихся протобионтов в какой-то мере содействовала основанная на комплементарности, уже возможная в этих условиях, но еще очень несовершенная репликация содержащихся в протобионте полинуклеотидов. Однако главное заключалось в том, что протобионты сохраняли постоянство соотношения скоростей и согласованности совершавшихся в них реакций. Это определялось тем, что и при разрастании они все время сохраняли в себе исходную повышенную концентрацию простейших неорганических или органических катализаторов, избирательно поглощая их из внешней среды[4].

Если в том или ином протобионте в условиях постоянной или изменявшейся внешней среды происходило ускорение реакций окисления, сопряжения и полимеризации, повышение их согласованности, вообще изменение обмена, способствующее ускорению синтеза и роста системы, то такая система естественно приобретала преимущество перед остальными и начинала образовываться все в большем и большем количестве экземпляров. На этой основе и должно было происходить постепенное усовершенствование организации подавляющей массы разрастающихся и размножающихся протобионтов.

Прежде всего, это усовершенствование должно было касаться их каталитического аппарата как главнейшего фактора организации обмена веществ, основанного на соотношении скоростей отдельных составляющих обмен реакций. Конечно, на разбираемой нами стадии развития не могло быть и речи о таких сложных, наделенных специфическим внутримолекулярным строением веществах, какими являются ферменты современных организмов. Доступными для протобионтов катализаторами могли служить только присутствовавшие в значительных количествах в «первичном бульоне» простейшие органические вещества или неорганические соединения. В частности, например, соли железа, меди и других тяжелых металлов могли значительно ускорять реакции переноса водорода. Правда, их каталитическое действие несравненно слабее, чем действие таких ферментов, как пероксидаза или фенолоксидаза. Они являются, так сказать, очень «плохими» по сравнению с ферментами катализаторами, но как это было показано В. Лангенбеком, их каталитическая активность может быть повышена при сочетании их с теми или иными радикалами и молекулами.

Так, например, реакция переноса водорода может быть ускорена уже ионом неорганического железа. Но это ускорение очень слабое. Оно несколько возрастает при сочетании железа с пирролом. Если же железо включить в четырехпиррольное соединение — в порфириновое кольцо, то полученный таким образом гемин будет обладать каталитическим действием, в 1000 раз превосходящим аналогичное действие неорганического железа. Как показал В. Лангенбек, даже такое простое органическое соединение, как метиламин, может ускорять реакцию декарбоксилирования кетокислот аналогично тому, как это осуществляется в живой клетке ферментом карбоксилазой. Однако сам по себе метиламин действует в указанном направлении настолько слабо, что это действие может быть обнаружено только при повышенной температуре (в условиях автоклава). Включение в молекулу метиламина карбоксильной группы (синтез гликокола) повышает его каталитическую активность почти в 20 раз. Еще в несколько раз она увеличивается при включении ароматического или гетероциклического кольца и т. д. Идя этим путем, сознательно включая в исходную молекулу все новые и новые атомные группировки, Лангенбек получал свои знаменитые «искусственные модели ферментов», в частности такого рода соединения, каталитическое действие которых во многие тысячи раз превосходило аналогичное действие метиламина.

Этот же путь последовательного усовершенствования простейших катализаторов мог быть использован и в процессе эволюционного развития протобионтов, на основе их естественного отбора. На такого рода возможность эволюционного формирования биологических катализаторов справедливо указывал М. Кальвин. Однако просто в растворе отдельные молекулы катализаторов не могли подвергаться действию естественного отбора, так как для самих этих молекул их способность лучше или хуже катализировать реакции окисления не давала им никакого преимущества в отношении длительности существования или увеличения числа по сравнению с другими аналогичными молекулами, не обладавшими этой способностью. Иные отношения создавались для катализаторов, включенных в целостную систему протобионта. Отдельные растворенные в окружающей среде части сложной каталитически активной молекулы сами по себе могли быть почти полностью лишены этой активности. Однако избирательно поглощаясь протобионтом, они сочетались в нем в каталитически активный комплекс и если этот комплекс ускорял (по сравнению с внешней средой) полимеризацию или другие указанные выше реакции, именно он определял собой поточный характер системы, ее динамическую устойчивость и способность к росту (как это мы видели на примере модельных опытов).

Страница:  1  2  3  4  5 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы