Разработка методов анализа деформаций подземных сооружений

. (26)

Равенство (26) будет удовлетворено лишь в случае, если все величины будут уравнены.

Измеренные величины представим в виде:

где волнистой чертой сверху отмечены измеренные, либо приближенно известные величины.

Величины деформаций в первом приб

лижении известны , как величины малые, следовательно, поправки к ним будут собственно смещениями наблюдаемых точек от вероятнейшей кривой: .

Представим величины, характеризующие положение вероятнейшей окружности, в виде

где величины являются дополнительными неизвестными. В таком случае уравнение (26) имеет вид:

(27)

Полагая, что поправки к измеренным величинам и дополнительным неизвестным – величины малые, воспользуемся разложением в ряд Тейлора и приведем нелинейное уравнение (27) к линейному виду и введем обозначения:

(28)

где ; .

Введем обозначения:

С учетом принятых обозначений уравнение (28) представим в виде условных уравнений

,(29)

где невязки .

С учетом (19) и (20) уравнение (29) можно представить в виде:

,(30)

где при

* :

*

а при :

Используя условные уравнения (30), составим первую целевую функцию метода наименьших квадратов:

. (31)

После дифференцирования из полученных производных сформируем уравнения поправок: . (32)

С учетом поправок, выраженных через коррелаты (32), условные уравнения (30) предстанут в виде:

. (33)

Для определения параметров вероятнейшей окружности из уравнения (33) сформируем вторую целевую функцию, преобразовав величину свободного члена li:

,(34)

где ,

откуда определим, при каких значениях и функция (34) будет иметь минимум

откуда получим:

(35)

С учетом поправок в измеренные величины, выраженных через коррелаты (32), и перегруппировки членов уравнений, окончательно получим:

(36)

Система уравнений (36) решается совместно с системой уравнений (33). Объединенную систему уравнений можно представить в виде:

где

По сути, этот метод является коррелатным методом с дополнительными неизвестными. Основное отличие его заключается лишь в том, что на значения дополнительных неизвестных наложено новое условие

.

По данной методике был обработан ранее приведенный пример. Оценка точности практически не изменилась, а поправки в измеренные стороны уменьшились, а величина выявленных деформаций увеличилась в среднем на 2 мм. Основное преимущество разработанного метода заключается в том, что для выполнения математической обработки результатов измерений используется стандартный алгоритм коррелатного метода с дополнительными неизвестными.

ЗАКЛЮЧЕНИЕ

Развитие городского транспорта в Тегеране ведется активными темпами. К настоящему времени уже активно эксплуатируются линии современного метро, и в ближайшем будущем сеть метрополитена Тегерана будет существенно развита. Учитывая, что геологические условия в зоне строительства тоннелей являются сложными, проблема наблюдений за деформациями обделок тоннелей является важной и актуальной задачей.

Надежное определение положения колец тоннеля возможно лишь при высокоточных методах передачи координат и дирекционных углов в подземные геодезические сети. В связи с этим в диссертации автором разработана эффективная методика ориентирования сторон подземной полигонометрии методом двух шахт. При этом через стволы шахт передаются только координаты. При этом исключается трудоемкая операция передачи дирекционного угла к сторонам подземной полигонометрии. В диссертации выполнен подробный анализ точности как дирекционных углов, так и координат пунктов, который убедительно показал, что усовершенствованная методика ориентирования подземных геодезических сетей обеспечивает точность, необходимую как для строительства тоннелей, так и для изучения деформаций стен тоннелей.

Современные средства геодезических измерений, а именно, электронные тахеометры, позволяют выполнять высокоточные измерений в безотражательном режиме с точностью вполне удовлетворяющей точностным требованиям к определению деформаций колец тоннеля (2 – 5 мм). В связи с этим автором диссертации была поставлена научная задача: разработать математический аппарат эффективной разработки результатов измерений с возможностью объективной оценки точности результатов измерений. Автором составлена математическая модель, связывающая результаты измерений с деформационными характеристиками стенок тоннелей:

,

гдеX, Y – координаты центра тоннеля относительно точки стояния инструмента;

R – вероятнейший радиус тоннеля.

Учитывая, что определяемых неизвестных всего три, а результатов измерений значительно больше, появляется возможность использования метода наименьших квадратов для получения наиболее надежных значений искомых величин.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы