Разработка методов анализа деформаций подземных сооружений
. (26)
Равенство (26) будет удовлетворено лишь в случае, если все величины будут уравнены.
Измеренные величины представим в виде:
где волнистой чертой сверху отмечены измеренные, либо приближенно известные величины.
Величины деформаций в первом приб
лижении известны , как величины малые, следовательно, поправки к ним будут собственно смещениями наблюдаемых точек от вероятнейшей кривой: .
Представим величины, характеризующие положение вероятнейшей окружности, в виде
где величины являются дополнительными неизвестными. В таком случае уравнение (26) имеет вид:
(27)
Полагая, что поправки к измеренным величинам и дополнительным неизвестным – величины малые, воспользуемся разложением в ряд Тейлора и приведем нелинейное уравнение (27) к линейному виду и введем обозначения:
(28)
где ; .
Введем обозначения:
С учетом принятых обозначений уравнение (28) представим в виде условных уравнений
,(29)
где невязки .
С учетом (19) и (20) уравнение (29) можно представить в виде:
,(30)
где при
:
а при :
Используя условные уравнения (30), составим первую целевую функцию метода наименьших квадратов:
. (31)
После дифференцирования из полученных производных сформируем уравнения поправок: . (32)
С учетом поправок, выраженных через коррелаты (32), условные уравнения (30) предстанут в виде:
. (33)
Для определения параметров вероятнейшей окружности из уравнения (33) сформируем вторую целевую функцию, преобразовав величину свободного члена li:
,(34)
где ,
откуда определим, при каких значениях и функция (34) будет иметь минимум
откуда получим:
(35)
С учетом поправок в измеренные величины, выраженных через коррелаты (32), и перегруппировки членов уравнений, окончательно получим:
(36)
Система уравнений (36) решается совместно с системой уравнений (33). Объединенную систему уравнений можно представить в виде:
где
По сути, этот метод является коррелатным методом с дополнительными неизвестными. Основное отличие его заключается лишь в том, что на значения дополнительных неизвестных наложено новое условие
.
По данной методике был обработан ранее приведенный пример. Оценка точности практически не изменилась, а поправки в измеренные стороны уменьшились, а величина выявленных деформаций увеличилась в среднем на 2 мм. Основное преимущество разработанного метода заключается в том, что для выполнения математической обработки результатов измерений используется стандартный алгоритм коррелатного метода с дополнительными неизвестными.
ЗАКЛЮЧЕНИЕ
Развитие городского транспорта в Тегеране ведется активными темпами. К настоящему времени уже активно эксплуатируются линии современного метро, и в ближайшем будущем сеть метрополитена Тегерана будет существенно развита. Учитывая, что геологические условия в зоне строительства тоннелей являются сложными, проблема наблюдений за деформациями обделок тоннелей является важной и актуальной задачей.
Надежное определение положения колец тоннеля возможно лишь при высокоточных методах передачи координат и дирекционных углов в подземные геодезические сети. В связи с этим в диссертации автором разработана эффективная методика ориентирования сторон подземной полигонометрии методом двух шахт. При этом через стволы шахт передаются только координаты. При этом исключается трудоемкая операция передачи дирекционного угла к сторонам подземной полигонометрии. В диссертации выполнен подробный анализ точности как дирекционных углов, так и координат пунктов, который убедительно показал, что усовершенствованная методика ориентирования подземных геодезических сетей обеспечивает точность, необходимую как для строительства тоннелей, так и для изучения деформаций стен тоннелей.
Современные средства геодезических измерений, а именно, электронные тахеометры, позволяют выполнять высокоточные измерений в безотражательном режиме с точностью вполне удовлетворяющей точностным требованиям к определению деформаций колец тоннеля (2 – 5 мм). В связи с этим автором диссертации была поставлена научная задача: разработать математический аппарат эффективной разработки результатов измерений с возможностью объективной оценки точности результатов измерений. Автором составлена математическая модель, связывающая результаты измерений с деформационными характеристиками стенок тоннелей:
,
гдеX, Y – координаты центра тоннеля относительно точки стояния инструмента;
R – вероятнейший радиус тоннеля.
Учитывая, что определяемых неизвестных всего три, а результатов измерений значительно больше, появляется возможность использования метода наименьших квадратов для получения наиболее надежных значений искомых величин.
Другие рефераты на тему «Геология, гидрология и геодезия»:
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин