Применение ТТЛ микросхем

Ориентировочные зависимости отношения помеха-сигнал К от параметров полосковой линии Н и S приведены на рис. 4.19. По этим зависимостям можно оценить максимальную перекрестную помеху при наихудших условиях, когда в параллельно расположенных линиях направления распространения сигналов противоположны. Из рисунка видно, что при уменьшении расстояния Н между проводником полосковой линии и земляно

й пластиной перекрестные помехи уменьшаются. При введении проводника массы между двумя сигнальными проводниками влияние перекрестных помех уменьшается в несколько раз, при этом земляной проводник должен быть приблизительно в три раза шире сигнальных проводников, а расстояния между проводниками должны быть равны ширине сигнальных проводников.

Отражения в линиях связи. При распространении сигналов в быстродействующих ИС ТТЛ накладываются определенные ограничения на длину линий связи, так как время распространения в линии становится соизмеримым с длительностью фронтов выходных импульсов. Когда соединение между двумя ЛЭ имеет такую длину, что логический перепад на выходе ЛЭ-передатчика (управляющего ЛЭ) сигнала отрабатывается раньше, чем на этот выход возвращается первый отраженный фронт сигнала от ЛЭ-приемника (управляемого ЛЭ) сигнала, такое соединение рассматривают как длинную линию. Несогласованность нагрузки с длинной линией приводит к возникновению отражений, которые снижают помехоустойчивость, увеличивают время задержки распространения сигналов.

Рис. 4.20. Отражения в линии при воздействии положительного фронта импульса

Соединительные линии имеют погонную задержку около 5 нс на метр, т.е. изменение напряжения на одном конце линии вызывает изменение напряжения на другом конце не мгновенно. Например, скачок напряжения на одном конце линии длиной 2 м вызывает соответствующее изменение напряжения на другом конце линии только через 10 нс. Для однородной линии это изменение зависит от волнового сопротивления линии Z0 и нагрузки на ее конце: сигнал отражается от конца линии и через определенный интервал времени снова приходит к передатчику, откуда опять отражается и т.д. Иными словами, переключение ЛЭ нельзя гарантировать до того момента, пока на вход линии не вернется первый отраженный фронт импульса и, таким образом, реальная задержка распространения увеличится на удвоенное значение задержки в линии.

Таким образом, основной причиной ограничения длины линий связи являются отражения от электрических неоднородностей. Любое изменение ширины печатного проводника, наличие сквозных отверстий в печатной плате, ответвлений от линии, подключение разъемов, рассогласование входных и выходных сопротивлений ИС с волновым сопротивлением линии являются неоднородностями длинной линии. Любая неоднородность вызывает появление отражений, в результате которых появляются импульсы, распространяющиеся в обратном направлении (ко входу линии). Кроме того, импульсы, распространяющиеся по направлению к выходу линии, так же претерпевают изменения. Зная параметры линии, а также входные и выходные характеристики ИС ТТЛ, можно оценить коэффициент отражений.

Для расчета отражений в ИС ТТЛ серии К155 можно использовать значения входных и выходных сопротивлений: входное сопротивление равно 1000 Ом при лог. 0 и стремится к бесконечности при лог. 1; выходное сопротивление 10 Ом при лог. 0 и 150 Ом при лог. 1.

Однако ввиду значительной нелинейности сопротивлений при переключении ЛЭ гораздо удобнее использовать для расчета отражений графический метод. Полная картина распределения напряжения по линии с постоянным сопротивлением может быть определена с помощью входных и выходных характеристик передающего и приемного ЛЭ. На рис. 4.20, б показаны входная характеристика приемного логического элемента D2 (II) и выходные характеристики передающего элемента D1 в состоянии лог. 0 (I) и лог. 1 (III) (ИС серии К155). При этом предполагается, что токи утечки пренебрежимо малы, поэтому входная характеристика приемного ЛЭ и выходная характеристика передающего ЛЭ при напряжении лог. 1 на выходе совпадают с правой полуосью напряжения.

Точка пересечения А выходной характеристики в состоянии лог. 0 элемента D1 (I) с входной характеристикой элемента D2 определяет статическое состояние лог. 0, а точка В — статическое состояние лог. 1 на выходе D1. Предполагается, что волновое сопротивление Z0 линии равно 50 Ом.

Если элемент D1 переключается в состояние лог. 1, то распределение напряжения определяется нагрузочной характеристикой (прямая сопротивления Аа), т. е. D1 работает на волновое сопротивление. Точка пересечения а этой прямой с выходной характеристикой III элемента D1 определяет амплитуду первого фронта импульса на входе линии (рис. 4.20, в). Скачок напряжения на входе распространяется до элемента D2, где отражается ввиду рассогласования (принятого для данного построения) между выходным сопротивлением D1 при 1 на его выходе и волновым сопротивлением линии. Скачок напряжения элемента D2 определяется линией нагрузки, проведенной до входной характеристики элемента D2 (линия ab). Точка с определяет амплитуду второго фронта импульса на входе линии при переключении в состояние лог. 1 элемента D1, а точка а — амплитуду соответствующего фронта импульса на выходе линии (рис. 4.20, г). Этот процесс продолжается до тех пор, пока отражения не достигнут пренебрежимо малой величины. Интервал времени между отражениями равен задержке линии. Из построения (рис. 4.20) видно, что амплитуда первого фронта импульса на входе линии при выключении (переключение из 0 в 1) элемента D1 близка к порогу квантования. Это значит, что элемент D1 может не переключиться до того момента, пока на вход линии не вернется первый отраженный фронт импульса.

Выходное сопротивление при лог. 1 на выходе ЛЭ серии К531 меньше, чем ЛЭ серии К155. Поэтому для ИС ТТЛ серии К531 может оказаться, что выходное сопротивление передающего ЛЭ будет значительно меньше, чем волновое сопротивление линии и амплитуда первого фронта импульса на выходе линии будет заметно больше напряжения лог. 1 в установившемся состоянии. При малых токах утечки амплитуда фронта второго импульса на входе линии также будет большой. При последующих отражениях напряжение в линии будет приближаться к уровню лог. 1. Значительное превышение напряжения лог. 1 может приводить к задержке времени переключения ЛЭ, увеличению перекрестных помех. Выбросы напряжения на уровне лог. 1 можно уменьшить, снижая волновое сопротивление линии. Однако при этом будет уменьшаться и амплитуда первого фронта импульса на входе линии.

Графический метод может быть использован и для определения отражений при включении приемного ЛЭ. На рис. 4.21, а изображены выходные характеристики передающего ЛЭ (I — лог. 0, III — лог. 1) и входная характеристика приемного ЛЭ (II') без демпфирующего диода и с демпфирующим диодом (II) на входе ЛЭ. Статическое состояние лог. 1 определяется точкой пересечения В выходной характеристики в состоянии лог. 1 передающего ЛЭ с входной характеристикой приемного ЛЭ. Предполагается, что волновое сопротивление линии Z0 = 50 Ом.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы