Теория надежности

Закон распределения наработки до отказа определяет количественные показатели Надёжность невосстанавливаемых изделий. Закон распределения записывается либо в дифференциальной форме плотности вероятности f (t), либо в интегральной форме F (t). Существуют следующие соотношения между показателями Надёжность и законом распределения:

http://030.help-rus-student.ru/images/004_1.jpg

Для восстанавливаемых изделий вероятность появления n отказов за время t в случае простейшего потока отказов определяется законом Пуассона:

http://030.help-rus-student.ru/images/004_2.jpg

Из него следует, что вероятность отсутствия отказов за время t равна Р (t) = exp(-lt) (экспоненциальный закон надёжности).

Технические системы, состоящие из конструктивно независимых узлов, обладающие способностью перестраивать свою структуру для сохранения работоспособности при отказе отдельных частей, в теории Надёжность принято называть сложными техническими системами (в отличие от сложных кибернетических систем, называются также большими системами). Число работоспособных состоянии таких систем – два и более. Каждое из работоспособных состояний характеризуется своей эффективностью работы, которая может измеряться производительностью, вероятностью выполнения поставленной задачи и т.д. Показателем Надёжность сложной системы может быть суммарная вероятность работоспособности системы – сумма вероятностей всех работоспособных состояний системы.

Способы определения количественных показателей надёжности. Показатели Надёжность определяются из расчётов, проведением испытаний и обработкой результатов (статистических данных) эксплуатации изделий, моделированием на ЭВМ, а также в результате анализа физико-химических процессов, обусловливающих Надёжность изделия. Расчёты Надёжность основаны на том, что при определенной структуре изделия и имеющемся законе распределения наработки до отказа изделий этого типа существуют вполне определенные зависимости между показателями Надёжность отдельных элементов и Надёжность изделия в целом. Для установления таких зависимостей используются следующие приемы: решение уравнении, составленных на основании структурной схемы Надёжность (использование последовательно-параллельных структур) или на основании логических связей между состояниями изделия (использование алгебры логики); решение дифференциальных уравнений, описывающих процесс перехода изделия из одного состояния в другие (использование графов состояний); составление функций, описывающих состояния сложного изделия. Расчёты надёжности производятся главным образом на этапе проектирования изделий с целью прогнозирования для данного варианта изделия ожидаемой Надёжность. Это позволяет выбрать наиболее подходящий вариант конструкции и методы обеспечения Надёжность, выявить «слабые места», обоснованно назначить рабочие режимы, форму и порядок обслуживания изделия.

Испытания на надёжность производятся на этапах разработки опытного образца и серийного производства изделия. Существуют испытания на надёжность определительные, в результате которых определяют показатели надёжность; контрольные, имеющие целью контроль качества технологического процесса, обеспечивающего с некоторым риском Надёжность не ниже заданной; ускоренные, в ходе которых используют факторы, ускоряющие процесс возникновения отказов; неразрушающие, основанные на применении методов дефектоскопии и интроскопии, а также на изучении косвенных признаков (шумов, тепловых излучений и т.п.), сопутствующих возникновению отказов.

Моделирование на ЭВМ является наиболее эффективным средством анализа надёжности сложных систем. Широко распространены два алгоритма моделирования: первый, основанный на моделировании физических процессов, происходящих в исследуемом объекте (оценка Надёжность при этом определяется по числу выходов параметров объекта за пределы допуска); второй, основанный на решении систем уравнений, описывающих состояния исследуемого объекта.

Анализ физико-химических процессов также позволяет получить оценку Надёжность исследуемого изделия, т. к. часто удаётся установить зависимость Надёжность от состояния и характера протекания физико-химических процессов (соотношение показателей прочности и нагрузки, износостойкость, наличие примесей в материалах, изменение электрических и магнитных характеристик, шумовые эффекты и т.д.). Наиболее часто анализ физико-химических процессов применяется при оценке Надёжность элементов радиоэлектронной аппаратуры.

Способы повышения надёжности. На стадии разработки изделий: использование новых материалов, обладающих улучшенными физико-химическими характеристиками, и новых элементов, обладающих повышенной надёжностью по сравнению с применявшимися ранее; принципиально новые конструктивные решения, например замена электровакуумных ламп полупроводниковыми приборами, а затем интегральными схемами; резервирование, в том числе аппаратурное (поэлементное), временное и информационное; разработка помехозащищённых программ и помехозащищённого кодирования информации; выбор оптимальных рабочих режимов и наиболее эффективной защиты от неблагоприятных внутренних и внешних воздействий; применение эффективного контроля, позволяющего не только констатировать техническое состояние изделия (простой контроль) и устанавливать причины возникновения отказового состояния (диагностический контроль), но и предсказывать будущее состояние изделия, с тем чтобы предупреждать возникновение отказов (прогнозирующий контроль).

В процессе производства: использование прогрессивной технологии обработки материалов и прогрессивных методов соединения деталей; применение эффективных методов контроля (в том числе автоматизированного и статистического) качества технологических операций и качества изделий; разработка рациональных способов тренировки изделий, выявляющих скрытые производственные дефекты; испытания на надёжность, исключающие приёмку ненадёжных изделий.

Во время эксплуатации: обеспечение заданных условий и режимов работы; проведение профилактических работ и обеспечение изделий запасными деталями, узлами и элементами, инструментом и материалами; диагностический контроль, предупреждающий о возникновении отказов.

В ходе развития техники возникают новые аспекты проблемы обеспечения надёжности. Так, например, внедрение больших интегральных схем требует принципиально новых методов расчёта их Надёжность, применение систем автоматизированного контроля приводит к необходимости учёта его влияния на показатели надёжности и т.д. Наука о надёжности возникла на стыке ряда научных дисциплин, а именно: теории вероятностей и случайных процессов, математической логики, термодинамики, технической диагностики и др., развитие которых взаимосвязанно и находит своё отражение в развитии теории надёжности. Основное направление развития науки о на

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы