Виды физических полей тела человека
Магиитография позволяет решать и другую важную задачу кардиологии - определение кровотока в сердце. Если наложить небольшое внешнее магнитное поле, то периодический выброс крови сердцем вызовет переменный магнитный сигнал, позволяющий определить объем и скорость движущейся жидкости.
Совсем недавно возникло новое направление в магнитокардиографии, которое сродни рассматриваемым ниже нейромаг
питным измерениям, - это МГК высокого разрешения. Суть ее заключается в более "пристальном" изучении тех интервалов сердечного цикла когда мышца спокойна: в это время можно измерить слабые магнитные сигналы, сопровождающие нервные импульсы, распространяющиеся в сердце. Была выявлена интересная особенность эти системы неизменны в течение приблизительно 20 циклов, затем слегка изменяют форму, снова сохраняя ее следующие 5-10 циклов, и т.д. Вероятно, здесь содержится определенная информация о нервных процессах в сердце. [1]
6. Ферромагнитные частицы в организме
На коже и в организме большинства людей, особенно работающих в металлообрабатывающей промышленности, присутствуют мелкие ферромагнитные частицы, магнитные поля которых могут мешать тонким биомагнитным измерениям. Вообще говоря, от этих помех можно избавиться размагничиванием во внешнем переменном поле убывающей амплитуды. Поля ферромагнитных частиц можно и усилить намагничиванием в достаточно большом постоянном поле. Тогда измерения можно проводить даже менее чувствительными приборами, особенно если содержание ферромагнитных частиц в организме велико. Например, обычные (феррозондовые) магнитометры ужо используются как средство охраны труда для определения содержания железной пыли в легких сварщиков.
Применение сквида позволяет обнаруживать малейшие количества не только ферромагнитных, но и парамагнитных (т. с. существенно слабее намагничиваемых) примесей. Высокая чувствительность метода может оказаться полезной для ряда диагностических целей. С помощью сквид-магнитометров удалось выделить магнитный сигнал от микрочастиц железа, попавших в желудок вместе с едой, а это дает возможность определять, например, какими были продукты - свежими или консервированными. Кроме того, измерение распределения магнитных полей вокруг торса человека после ингаляции безвредного для организма магнетита (Fe3O4) позволяет наблюдать места преимущественного осаждения пыли в легких и скорость ее естественного выведения (обнаружено, в частности, что у курящих пыль выводится медленнее, чем у некурящих). Таким способом можно выявить очаги застойности (воспаление), а по результатам физического воздействия на частицы пыли (ультразвуком, СВЧ-нагревом или переменным магнитным полем) получить информацию о характере патологических изменений в очаге. Подобные исследования проводятся и на любом другом органе, в который можно ввести магнитные частицы. Например, недавно был реализован своеобразный метод регистрации колебательных движений глаза (тремора и саккад) и органов среднего уха, заключающийся в том, что в нужном месте закрепляется мельчайшая пылинка ферромагнетика, а ее движение регистрируется по колебаниям магнитного поля.
7. Магнитные поля внутренних органов, кожи, мышц, глаз
Магнитные проявления биологической активности свойственны многим органам живых организмов. Установлено, что постоянные или колеблющиеся с периодом в. несколько минут магнитные ноля характерны для желудка человека, причем вид сигнала явно определяется функциональным состоянием желудка. Сигналы различны до и после приема пищи, изменяются при приеме воды (натощак) или лекарства. Этот факт может в дальнейшем найти применение в диагностике желудочных заболеваний.
Были обнаружены магнитные поля постоянных электрических токов в коже, появляющихся при прикосновении к покрывающему ее волосяному покрову. Обнаружение таких токов электрографически предельно затруднено из-за паразитных потенциалов, возникающих в местах крепления электродов и, кроме того, самим их закреплением - они давят на кожу.
Измерены магнитные поля при сокращении скелетных мышц человека. Запись этих полей как функции времени называют магнитомиограммой (ММГ). В дополнение к высокочастотным компонентам (10-150 Гц), регистрируемым также и электромиографически, наблюдалась медленно меняющаяся составляющая ММГ, возникавшая при сокращении мышцы или при се легком массаже. Такое магнитное поле свойственно мышцам ног и способно существовать около часа. Высказывалось мнение, что токи, вызывающие эти поля, играют важную роль в росте и регенерации конечностей, например в залечивании переломов кости.
Известно, что глаз - источник довольно сильного электрического поля, так как работа сетчатки сопровождается возникновением потенциала до 0,01 В между передней и задней ее поверхностями. Это вызывает в окружающих тканях электрический ток, магнитное поле которого можно регистрировать в виде магнитоокулограммы (МОГ) при движении глаз и в виде магниторетинограммы (МРГ) при изменении освещенности сетчатки. Наблюдение и изучение магнитных полей глаза представляют собой интересную самостоятельную задачу. Вместе с тем оказалось, что индукция магнитного поля глаз существенно выше, чем магнитного поля мозга. Поэтому конфигурацию и другие характеристики этих полей необходимо знать, приступая к магнитографическим исследованиям мозга, особенно при изучении зрительного восприятия.
8. Нейромагнитные поля
При работе мозга, основы которой пока еще во многом загадочны, возникают как электрические, так и магнитные поля. Наиболее сильные сигналы порождаются спонтанной ритмической активностью мозга. С помощью электроэнцефалографии проведена классификация этих ритмов и установлено соответствие между ними и функциональным состоянием мозга (бодрствованием, разными фазами сна) или патологическими проявлениями (например, эпилептическим припадком).
Исследования показали, что электро- и магнитоэнцефалограммы (ЭЭГ и МЭГ) могут сильно отличаться. В кардиографии же сигналы ЭКГ и МКГ очень похожи. Поэтому применение сквид-магнитометров особенно перспективно при исследовании мозга.
Однако различие в ЭЭГ и МЭГ отнюдь не обязательно. Так, в альфа-ритме, т.е. колебаниях с частотой 8-12 Гц, характерном для бодрствующего человека с закрытыми глазами и спокойном состоянии, магнитные и электрические поля появляются синхронно, т.е. субъект с большим электрическим сигналом альфа-ритма вырабатывает и больший магнитный сигнал. Правда, подобная четкая связь отсутствовала у пациентов с нарушениями ритмической активности.
При сравнении электро- и магнитоэнцефалограмм следует учитывать, что в отличие от других органов мозг практически целиком окружен костной тканью черепа, а ее электропроводность много меньше, чем кожи и самого вещества мозга. Кроме того, естественные отверстия черепа усложняют пути электрического тока, в результате чего картина потенциалов на поверхности головы человека представляет собой сложное наложение пространственных распределений сигналов от довольно удаленных источников внутри мозга. Магнитный же датчик реагирует главным образом па более сильные токи в самой области биоэлектрической активности, что также очень важно, определенным образом ориентированные относительно приемной катушки сквид-магнитометра. Это делает магнитографические методы предпочтительными, поскольку наибольший исследовательский и диагностический интерес представляет изучение сигналов от конкретного источника внутри мозга - без помех, создаваемых другими видами активности. Так, исследования мозга у лиц, страдающих эпилептическими припадками, показали, что магнитографически удается точно обнаружить очаг патологической активности, в то время как на ЭЭГ у отдельных пациентов не регистрировался спектр, характерный для эпилепсии.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики