Переключательные функции одного и двух аргументов

. (3)

Если подставить в выражение (3) значения f(i), то получим дизъюнкцию конституент, которые равны еди­нице на тех же наборах, что и заданная функция. Дей­ствительно, ввиду того, что 0×x=0 и 0Úх=х, члены вы­ражения (2), в которых коэффициенты f(i)=0, можно опустить, а так как x×1 = x, то коэффициенты f(i

)=1 можно не писать. Тогда

где j1, …,jm – номера наборов, на которых функция равна единице;

m – число таких наборов.

Определение 3. Дизъюнкция конституент единицы, равных единице на тех же наборах, что и заданная функция, называется совершенной дизъюнктивной нормальной формой переключательной функции.

Любую переключательную функцию f(x1, . . . , xn) (кроме константы ноль) можно представить в совершенной дизъюнктивной нормальной форме. Заметим, что любая переключательная функция имеет единственную совершенную дизъюнктивную нормальную форм у: это непосредственно следует из выражения (3).

Совершенную дизъюнктивную нормаль­ную форму переключательной функции удобно находить в такой последователь­ности:

· выписать ряд произведений всех аргументов и соединить их знаками дизъюнкции; количество произведений должно равняться числу наборов, на которых заданная функция обращается в единицу;

· записать под каждым произведением набор аргу­ментов, на котором функция равна единице, и над аргу­ментами, равными нулю, поставить знаки отрицания.

Это правило называют иногда правилом запи­си переключательной функции по единицам.

Пример 4. Представить в совершенной дизъюнктивной нормальной форме переключательную функцию четырех аргументов f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные единице, на следующих наборах аргументов:

0001, 0011, 0100, 0101, 1000, 1001, 1010, 1011, 1100, 1101, 1111.

Таким образом, совершенная дизъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из одиннадцати дизъюнкций, каждая из которых представляет собой конъюнкцию четырех элементов:

4. Совершенная конъюнктивная нормальная форма переключательной функции.

Если заданная переключательная функция равна единице на большинстве наборов аргументов, то представление функции в совершенной дизъюнктивной нормальной форме может оказаться достаточно громоздким. В этих случаях удобнее использовать другую форму представления функции – совершенную конъюнктивную нормальную форму. Для представления функций в этой форме используется функция конституенты нуля.

Рассмотрим выражение

, (4)

где f(i) – значение переключательной функции на i-м наборе.

Ввиду справедливости соотношений 1Ú x = 1 и 0Úх= х, при подстановке в выражение (4) значений функ­ции f(i), сомножители, у которых f(i), == 1, можно опустить, а значения функции f(i)=0 не писать. Тогда

(5)

где j1, j2, …,jm –номера наборов, на которых функ­ция равна нулю;

т -число таких наборов.

Определение 4. Произведение конституент нуля, которые равны нулю на тех же наборах, что и заданная функция, называется совершенной конъюнктивной нормальной формой.

Любая переключательная функция f(x1, . . . , xn) (кроме константы единицы) может быть пред­ставлена в совершенной конъюнктивной нормальной форме. Любая переключательная функ­ция имеет единственную совершенную конъюнктивную нормальную форму.

Сформулируем правило представления переключа­тельной функции в совершенной конъюнктивной нор­мальной форме. Чтобы представить переключательную функцию п аргументов в совершенной конъюнктивной нормальной форме, достаточно:

· выписать произведение дизъюнкций всех аргументов с количеством сомножителей, равным числу наборов, на которых заданная функция обращается в нуль;

· выписать под каждым сомножителем набор аргу­ментов, на котором функция равна нулю, и над аргу­ментами, равными единице, поставить знаки отрицания;

Это правило иногда называют правилом запи­си переключательной функции по нулям.

Пример 5. Представить в совершенной конъюнктив­ной нормальной форме функцию f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные нулю, на следующих наборах аргументов:

0000, 0010, 0110, 0111, 1110.

Таким образом, совершенная конъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из пяти конъюнкций, каждая из которых представляет собой дизъюнкцию четырех элементов:

ЛИТЕРАТУРА

1. Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: изд-во МГТУ им. Н.Э. Баумана, 2001.– 744 с. (Сер. Математика в техническом университете; Вып XIX).

2. Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.– М.: Наука, Физматлит, 2000.– 544 с.– ISBN 5-02-015238-2.

3. Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.– 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы