ЛИСП-реализация основных способов вычисления гамма-функции

Таблица 1. Значения коэффициентов Ck

Сама гамма-функция получается из ее логарифма взятием экспоненты. .

3 Функциональные модели и блок-схемы решения задачи

Функциональные модели и блок-схемы решения задачи представлены на рисунке 3, 4, 5, 6.

Условные обозначения:

§ X – параметр функции;

§ RS – и

нкремент;

§ GN – список коэффициентов;

§ Y – вспомогательная переменная;

§ RES – результат вычисления гамма-функции;

§ GAM – временная переменная, содержащая вычисление гамма-функции.

Рисунок 3 – Функциональная модель решения задачи для функции GAMMA

Рисунок 4 – Функциональная модель решения задачи для функции GAMMA_ WHOLE

Рисунок 5 – Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_LN

Рисунок 6 – Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_POINT

4. Программная реализация решения задачи

;СПИСОК КОЭФФИЦИЕНТОВ

(SETQ CN '(2.5066282746310005 1.0000000000190015 76.18009172947146 -86.50532032941677 24.01409824083091

-1.231739572450155 0.1208650973866179e-2 -0.5395239384953e-5))

;ЛОГАРИФМ ГАММА ФУНКЦИИ

(DEFUN GAMMA_LN (X)

(SETQ SER (CADR CN))

(SETQ L (CDDR CN))

(SETQ Y X)

(DO

((J 2))

((>= J 8))

(SETQ Y (+ Y 1))

(SETQ CO (CAR L))

(SETQ SER (+ SER (/ CO Y)))

(SETQ L (CDR L))

(SETQ J (+ J 1))

)

(SETQ Y (+ X 5.5))

(SETQ Y (- Y (* (+ X 0.5) (LOG Y))))

(SETQ Y (+ (* -1 Y) (LOG (* (CAR CN) (/ SER X)))))

)

;ВЫЧИСЛЕНИЕ ГАММА-ФУНКЦИИ ЧЕРЕЗ ЕЕ ЛОГАРИФМ

;ГАММА ДЛЯ ПОЛОЖИТЕЛЬНЫХ АРГУМЕНТОВ

(DEFUN GAMMA (X)

(EXP (GAMMA_LN X))

)

;ГАММА ДЛЯ ЦЕЛЫХ ЧИСЕЛ

(DEFUN GAMMA_WHOLE (X)

(SETQ X (- X 1))

(DO

((RES 1) (RS 1))

((EQL X 0) RS)

(SETQ RS (* RES RS))

(SETQ X (- X 1))

(SETQ RES (+ RES 1))

)

)

;ГАММА ДЛЯ МНОЖЕСТВА ТОЧЕК

(DEFUN GAMMA_POINT (X)

(IF (> X 0)

(PROGN

(SETQ Y (+ X 2))

(SETQ GAM (* (SQRT (* 2 (/ PI Y))) (EXP (+ (* Y (LOG Y)) (- (/ (- 1 (/ 1 (* 30 Y Y))) (* 12 Y)) Y)))))

(SETQ RES (/ GAM (* X (+ X 1))))

)

;ИНАЧЕ

(PROGN

(SETQ J 0)

(SETQ Y X)

(DO

(())

((>= Y 0))

(SETQ J (+ J 1))

(SETQ Y (+ Y 1))

)

(SETQ GAM (GAMMA_POINT Y))

(DO

((I 0))

((>= I (- J 1)))

(SETQ GAM (/ GAM (+ X I)))

(SETQ I (+ I 1))

)

(SETQ RES GAM)

)

)

RES)

;ПОЛУЧАЕМ ЭЛЕМЕНТ ФУНКЦИИ

(SETQ FUNC 0)

(SETQ INPUT_STREAM (OPEN " D:\GAMMA.TXT" :DIRECTION :INPUT))

(SETQ FUNC (READ INPUT_STREAM))

(CLOSE INPUT_STREAM)

;РЕЗУЛЬТАТ ГАММА-ФУНКЦИИ

(SETQ OUTPUT_STREAM (OPEN "D:\RESULT.TXT" :DIRECTION :OUTPUT))

(PRINT 'RESULT_OF_GAMMA_FUNCTION OUTPUT_STREAM)

;ПРИМЕНЯЕМ ДЛЯ ПОЛОЖИТЕЛЬНЫХ ЧИСЕЛ

(PRINT (MAPCAR 'GAMMA FUNC) OUTPUT_STREAM)

;ПРИМЕНЯЕМ ДЛЯ ПОЛОЖИТЕЛЬНЫХ ЦЕЛЫХ ЧИСЕЛ

(PRINT (MAPCAR 'GAMMA_WHOLE FUNC) OUTPUT_STREAM)

;ПРИМЕНЯЕМ ДЛЯ ЛЮБЫХ ЧИСЕЛ

(PRINT (MAPCAR 'GAMMA_POINT FUNC) OUTPUT_STREAM)

(TERPRI OUTPUT_STREAM)

(CLOSE OUTPUT_STREAM)

;END

5 Пример выполнения программы

Пример 1.

Рисунок 7 – Входные данные. Вычисление гамма-функции для положительных целых чисел

Рисунок 8 – Выходные данные. Вычисление гамма-функции для положительных целых чисел

Пример 2.

Рисунок 9 – Входные данные. Вычисление гамма-функции для положительных чисел

Рисунок 10 – Выходные данные. Вычисление гамма-функции для положительных чисел

Пример 3.

Рисунок 11 – Входные данные. Вычисление гамма-функции для множества чисел

Рисунок 12 – Выходные данные. Вычисление гамма-функции для множества чисел

ЗАКЛЮЧЕНИЕ

Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях. Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.

Итогом работы можно считать созданную функциональную модель реализации основных способов вычисления гамма функции. Данная модель применима к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы

1. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н.Бронштейн, К.А.Семендяев. – М.: Наука, 2007. – 708 с.

2. Вычисление гамма-функции и бета-функции [Электронный ресурс] – Режим доступа: http://www.cyberguru.ru/cpp-sources/algoriths/vytchislenie-gamma-funktsii-i-beta-funktsii.html

3. Гамма-функция – Википедия [Электронный ресурс] – Режим доступа: http://ru.wikipedia.org/wiki/Гамма_функция

4. Кремер, Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш.Кремер, 3-е издание – М.:ЮНИТИ-ДАНА, 2006. C. 412.

5. Семакин, И.Г. Основы программирования. [Текст] / И.Г.Семакин, А.П.Шестаков. – М.: Мир, 2006. C. 346.

6. Симанков, В.С. Основы функционального программирования [Текст] / В.С.Симанков, Т.Т.Зангиев, И.В.Зайцев. – Краснодар: КубГТУ, 2002. – 160 с.

7. Степанов, П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А.Степанов, А.В. Бржезовский. – М.: ГУАП, 2003. С. 79.

8. Хювенен Э. Мир Лиспа [Текст] / Э.Хювенен, Й.Сеппянен. – М.: Мир, 1990. – 460 с.

Страница:  1  2 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы