Тепловая защита зданий
3.4 Определение сопротивлений паропроницанию слоев ограждающей конструкции
Значение сопротивления паропроницанию одного конструктивного слоя Rvp определяется по формуле:
Rvp = d / m , (3.2)
где d - толщина слоя ограждающей конструкции, м;
m - расчетны
й коэффициент паропроницаемости материала слоя ограждающей конструкции, мг/(м·ч·Па), принимаемый по приложению Б.
Сопротивление паропроницанию измеряется в м2 · ч · Па/мг.
Сопротивление паропроницанию многослойного ограждения равно сумме сопротивлений паропроницанию отдельных слоев:
Rvp= Rvp1 + Rvp2 + … +Rvpn , (3.3)
где Rvp1, Rvp2, Rvpn - сопротивления паропроницанию отдельных слоев.
3.5 Проверка возможности конденсации влаги внутри ограждающей конструкции
Проверка проводится графическим способом. Для этого:
а) по оси абсцисс в выбранном масштабе откладываются последовательно сопротивления паропроницанию всех слоев конструкции Rvp (пример с трехслойной стеной показан на рис.2а, б).
С рисунка 1 переносятся отмеченные ранее сечения с сохранением их нумерации;
б) по оси ординат (внутренняя поверхность ограждения) в выбранном масштабе откладывается значение eint, а на наружной поверхности откладывается среднее значение парциального давления водяного пара за зимний период eext1 (рис.2а) (При отсутствии «зимнего» периода строится график для переходного периода, т.е. наиболее холодного). Прямая линия, соединяющая eint и eext1, - график изменения парциального давления водяного пара в ограждающей конструкции без учета возможной конденсации при установившемся процессе паропроницания;
в) по данным табл.3.2 для зимнего периода строится график изменения давления насыщенного водяного пара Е (на рис.2а – пунктирная линия);
г) проводится анализ взаимного расположения графиков Е и eint - eext (тонкая сплошная линия). Если графики не пересекаются, то конденсация водяного пара в ограждении отсутствует; в случае пересечения или касания графиков в конструкции возможна конденсация влаги;
д) аналогичные построения выполняются отдельно для летнего (рис.2б) и весенне-осеннего периодов года. Для построения графика изменения парциального давления водяного пара в конструкции используются средние значения за летний период eext2 и весенне-осенний период eext3 , взятые из табл.3.1;
е) в случае конденсации влаги (например, зимой) определяется плоскость или зона конденсации (заштрихована на рисунке 2а).
Для этого из концов прямой eint - eext1 проводятся касательные к графику Е. Область между точками касания Ек' и Ек" - зона конденсации. При совпадении точек касания получается плоскость конденсации.
Затем проводится итоговый график изменения парциального давления с учетом конденсации водяного пара (интенсивная линия, рис. 2а);
ж) зона (плоскость) конденсации влаги, образовавшаяся в период влагонакопления, переносится на график, соответствующий периоду без конденсации влаги в ограждении. В этот период происходит испарение накопившейся влаги. Проводится итоговый график изменения парциального давления, как это показано на рис. 2б (интенсивная линия);
з) на рисунках стрелками указывают направление движения влаги Р' и Р'' (к зоне или от зоны конденсации - в сторону уменьшения парциального давления водяного пара).
Если конденсация влаги отсутствует в течение года, влажностный режим ограждающей конструкции считается удовлетворительным, и далее расчет не проводится.
3.6 Расчет количества влаги, подходящей к зоне конденсации или отходящей от нее за зимний, летний и весенне-осенний периоды года
Для каждого периода года определяется количество влаги, подходящей (уходящей) на участке, предшествующем зоне конденсации, Р' , а также – уходящей из зоны конденсации, Р" , по формулам:
(3.4)
(3.5)
где Rivp - сопротивление паропроницанию от внутренней поверхности до начала зоны конденсации (рис.2);
Rеvp - сопротивление паропроницанию от конца зоны конденсации до наружной поверхности (рис. 2);
z – продолжительность периода в месяцах (табл.3.1);
множитель 722 – среднее количество часов в месяце;
значения Ек' и Ек'' определяются по графикам (см. рис. 2). В случае плоскости конденсации Ек' = Ек'' = Ек.
Количество влаги Р' и Р" определяется для каждого периода года.
Примечание
1. Р' и Р" рассчитываются по абсолютной величине.
2. Единицы измерения Р' и Р" – мг/м2; значения будут получаться достаточно большие. Поэтому целесообразно привести их к виду: х,хх ∙ 106 (например: 2,17 ∙ 106 или 0,74 ∙ 106).
Результаты расчетов сводятся в табл. 3.3. При этом Р' и Р" принимаются со знаком «плюс», если соответствующее количество влаги перемещается к зоне (плоскости) конденсации, и со знаком «минус», если количество влаги перемещается от зоны (плоскости) конденсации.
Таблица 3.3
Период года |
Рi ' |
Рi " |
Зима | ||
Лето | ||
Весна-Осень |
3.7 Проверка влажностного режима ограждающей конструкции из условия недопустимости накопления влаги в ней за годовой период эксплуатации
Определяется годовой баланс влаги:
Рi ' + Рi" = Р (3.6)
Получение результата Р ≤ 0 свидетельствует о том, что в течение года влаги может испариться больше, чем накопилось. Следовательно, конструкция удовлетворяет строительным нормам.
При Р > 0 количество накопившейся влаги превышает количество испарившейся, что недопустимо.
3.8 Проверка влажностного режима ограждающей конструкции из условия непревышения допустимой массовой влажности материала
Для того, чтобы относительная массовая влажность увлажняемого материала к концу периода влагонакопления не превышала допустимое значение (соответствующее полному сорбционному увлажнению материала), должно выполняться условие: