Свойства портландцемента. Основные свойства строительных материалов

, (5)

Водопоглощение по объему рассчитывают по формуле (4). Этот показатель зависит от объема, природы пор (замкнутые, открытые) и степени гидрофильности материала. Так, водопоглощение гранита составляет 0,02 – 0,7 %, тяжелого бетона 2 – 4 %, кирпича 8 – 15 %. В результате насыщения водой свойства материалов значительно измен

яются: увеличиваются средняя плотность и теплопроводность, объем изделий. Вследствие нарушения связей между частицами материала проникающими молекулами воды прочность его снижается.

Отношение предела прочности при сжатии материала, насыщенного водой, Rв к пределу прочности при сжатии в сухом состоянии Rс называется коэффициентом размягчения Кразм

<1 (6)

Этот коэффициент характеризует водостойкость материалов. Для глины, гипса Кразм=0, для металла, стекла – Кразм=1. Материалы с Кразм > 0,8 водостойки, с Кразм< 0,8 – не водостойки и применять их в конструкциях, испытывающих постоянное действие воды (фундаменты при наличии грунтовых вод, дамбы, плотины), согласно ГОСТу запрещено.

Влагоотдача – способность материала отдавать влагу при снижении влажности воздуха. Скорость влагоотдачи зависит от разности влажности образца и окружающей среды. Чем она выше, тем интенсивнее идет высушивание изделия. Крупнопористый гидрофобный материал отдает воду быстрее, чем мелкопористый гидрофильный. В естественных условиях влагоотдачу строительных материалов характеризуют интенсивностью потери влаги при относительной влажности воздуха 60 % и Т = 20 °С.

Водопроницаемость – свойство материала пропускать воду под давлением. Водопроницаемость оценивают по коэффициенту фильтрации Кф (м2/ч), который равен количеству воды, прошедшей в течение 1 ч через 1 м2 площади испытуемого материала при постоянном давлении. Особенно важно это свойство при строительстве гидротехнических сооружений (дамбы, плотины, молы, мосты), резервуаров, возведении стен подвалов при наличии грунтовых вод. Коэффициент фильтрации непосредственно связан обратной зависимостью с водонепроницаемостью материала, по которой ему присуждают марку. Чем ниже Кф, тем выше марка по водонепроницаемости.

Водонепроницаемость (например, бетона) характеризуется маркой W2, W4 .W12, обозначающей одностороннее гидростатическое давление в МПа (0,2; 0,4 . 1,2), при котором образец не пропускает воду в условиях стандартных испытаний. Испытания проводят на специальной установке.

Морозостойкость – способность материала сохранять свою прочность при многократном попеременном замораживании в водонасыщенном состоянии и оттаивании в воде. Для материалов, эксплуатируемых в условиях знакопеременных температур наружного воздуха, морозостойкость является одним из важнейших свойств, обеспечивающих их долговечность (дорожные покрытия, бордюрные камни, стеновые материалы). Разрушение материалов при их замораживании в водонасыщенном состоянии связано с образованием в порах льда, объем которого примерно на 9 % больше объема замерзшей воды. Поэтому если все поры в материале будут заполнены водой, то разрушение должно было бы произойти после первого цикла замораживания. Способность материала противостоять морозному разрушению обусловлена, в первую очередь, присутствием в его структуре определенного объема замкнутых пор, в которые и отжимается часть воды под действием давления растущих кристаллов льда. Таким образом, главными факторами, определяющими морозостойкость материала, являются показатели структуры, от которых зависят степень насыщения водой и интенсивность образования льда в порах.

В строительстве морозостойкость материала количественно оценивают маркой F (СТБ 4.206-94), т.е. числом циклов попеременного замораживания и оттаивания, которые выдерживают образцы материала без снижения прочности на 5– 25 % и массы на 3 – 5 % в зависимости от назначения материала.

Установлены следующие марки по морозостойкости: тяжелый бетон F50 – F500, легкий бетон F25 – F500, кирпич, стеновые керамические камни F15 – F35.

Воздухостойкость – способность материала длительно выдерживать многократное увлажнение и высушивание без деформаций и потери механической прочности. Природные и искусственные хрупкие каменные материалы (бетон, керамика), сжимающиеся при высыхании и расширяющиеся при увлажнении, разрушаются вследствие возникновения растягивающих напряжений. В подобных условиях работают дорожные покрытия, надводные части гидротехнических сооружений.

К основным теплофизическим свойствам, оценивающим отношение материала к тепловым воздействиям, относятся теплопроводность, теплоемкость, термостойкость, жаростойкость, огнеупорность, огнестойкость.

Теплопроводность – способность материала пропускать тепловой поток при условии разных температур поверхности. Степень теплопроводности материалов характеризует коэффициент, который равен количеству тепла, проходящего через стену из испытуемого материала толщиной 1 м площадью 1 м2 за 1 ч при разности температур противоположных поверхностей стены 1 К. Коэффициент теплопроводности измеряют в Вт/(м×К) – СТБ 4.206-94

, (7)

где Q – количество тепла, Дж; d – толщина материала, м; А – площадь сечения, перпендикулярного направлению теплового потока, м2; (t1 – t2) – разность температур, К; Т – продолжительность прохождения тепла, ч.

Теплопередача в твердых диэлектриках (передача энергии связанных колебаний узлов решётки путем распространения упругих волн с разными частотами) может быть представлена как процесс распространения квазичастиц-фононов. Для плотных (П=0) органических материалов l= 0,15-0,35 Вт/(мК).

В общем случае качественная модель l пористого бетона при обычных условиях эксплуатации (давление 0,1 МПа) выглядит следующим образом:

l=f(r,P,Wэ,Т,Dі,Al)

где Al - коэффициент анизотропии теплопроводности; P - параметры поровой структуры.

Для большинства материалов и веществ l=l0(1+Dl.Wэ), где l0 , – теплопроводность материала в сухом состоянии; Dl - коэффициент.

При 273К<Т<373 К выполняется соотношение

lT=l0[1+b(T-273)],

где l0 , lT – соответственно, теплопроводность материала при 273 К и температуре Т; b - коэффициент.

Теплопроводность материала зависит от вещественного состава, строения и характера пористости, температуры и влажности материала.

Особенности структуры оказывают значительное влияние на теплопроводность. Например, если материал имеет волокнистое строение, то тепло вдоль волокон передается быстрее, чем поперек. Так, теплопроводность древесины вдоль волокон равна 0,30, а поперек – 0,15 Вт/(м×К). Мелкопористые материалы менее теплопроводны, чем крупнопористые; материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Это объясняется тем, что в крупных и сообщающихся порах возникает движение воздуха, облегчающее перенос тепла.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Строительство и архитектура»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы