Работы М. Фарадея по электричеству
В 1907 г. Эйнштейн закладывает первые основы общей теории относительности. Из общей теории относительности был получен ряд важных выводов:
1.Свойства пространства - времени зависят от движущейся материи.
2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.
3. Частота света в результате действия поля тяготения должна изме
няться.
Общая теория относительности - ОТО - дала качественный скачок в развитии электродинамики, предложив уравнения Максвелла в гравитационных полях.
Некоторые соотношения релятивистской электродинамики мало исследованы, в результате чего проблемные вопросы физики пытаются объяснить, строя новую электродинамику, вводя новые физические поля - торсионные, монополь - магнитную частицу, имеющую один магнитный полюс, и т.д.
Максвелл вывел свои уравнения математически, исследуя модель магнитного поля в виде магнитных силовых линий, представляющих собой вихри, подобные смерчу, в эфире. Однако магнитное поле может представлять собой и другие, более или менее сложные движения, воздействующие на магнитную стрелку. Среда такого рода, наполненная молекулярными вихрями с параллельными осями, отличается от обычной жидкости тем, что она имеет различные давления в различных направлениях. Если бы она не сдерживалась надлежащим противодавлением, то она стремилась бы растянуться в экваторном направлении. "Среда, имеющая такого рода структуру, может быть способна к другим видам движения и смещения, чем те, которые обслуживают явления света и тепла; некоторые из них могут быть таковы, что они воспринимаются нашими чувствами при посредстве тех явлений, которые они производят".[35] Современная физика обходится без эфира, заменив его физическим вакуумом, в котором постоянно возникают и исчезают электрон-позитронные и фотонные пары, появляются различного вида напряженности и моменты, обладающие энергией, передаются поперечные колебания - электромагнитные волны и т. д. Эйнштейн пишет[36]: "Мы не можем в теоретической физике обойтись без эфира, т.е. континиума, наделенного физическими свойствами, ибо общая теория относительности исключает непосредственное дальнодействие; каждая же теория близкодействия предполагает наличие непрерывных полей, а, следовательно, существование эфира".
Математический формализм уравнений электродинамики не позволяет увидеть и предсказать ранее не известные явления без наличия модели. Моделью магнитного поля должна быть модель, подобная модели Максвелла, математическое исследование которой привело к созданию электродинамики.
Заключение
Если действительно, для того, чтобы гений реализовал свой творческий потенциал, он должен родиться в нужное время и в нужном месте, то судьба Майкла Фарадея полностью это подтверждает. В год его рождения (1791 г.) был опубликован трактат Гальвани, когда Фарадею исполнилось 8 лет, был создан Лондонский Королевский институт по распространению научных знаний. Годом позже в Лондонское Королевское общество - высший научный центр Великобритании - пришло сообщение об изобретении Вольта, когда Фарадею было 11 лет, его учитель Гемфри Деви доказал факт разложения воды с помощью вольтова столба и стал, таким образом, одним из основателей новой науки - электрохимии.
До Фарадея физика развивалась, но ее развитие шло по пути механистическому. Однако все открытия в области электричества и магнетизма предопределили научные идеи Фарадея, а затем математически их облекли в стройную теорию уравнениями Максвелла.
Влияние электрического тока на магнитную стрелку обнаружил датский физик Ханс Кристиан Эрстед. Во время лекции об электричестве и магнетизме он заметил, что магнитная стрелка компаса уклоняется от своего направления. После лекции он установил, что вблизи от полюса гальванического элемента.
Как только элемент замыкался – стрелка меняла направление. Эрстед долго размышлял над этим странным явлением: экспериментировал со стрелками и железными опилками, которые в момент замыкания располагались кругами около провода. Наконец в 1820 году он установил связь между магнетизмом и электричеством.
Затем было установлено, что магнетизм сопутствует ток и в проводниках, и в электролитах, и в газах, а это значит, что действие на магнитную стрелку – общий признак электрического тока.
Французские физики Био и Савар осенью того же года установили, что каждая часть проволоки с током действует на магнитный полюс. Это исследование привело к закону взаимодействия тока и магнитного полюса.
Одним из основоположников новой науки – электродинамики – является Андре Мари Ампер. Работы Ампера в области физики сразу привлекли к себе внимание. Узнав об опытах Эрстеда, он продолжил их и установил, что два параллельных проводника притягиваются друг к другу, если токи в них направлены в одну сторону и отталкиваются, если токи направлены в противоположные стороны. Опыты Ампера позволили обнаружить закон, определяющий величину и направление сил, которые действуют на проводник с током, если он помещён между полюсами магнита, то есть в магнитном поле. Направление силы определяют с помощью так называемого “правила правой руки”. Амперу также принадлежит гипотеза о сущности намагничивания. Он предположил, что причину намагничивания следует искать в существовании круговых молекулярных токов. Токи эти, подобно магнитным стрелкам, имеют два полюса и поэтому устанавливаются в направлении намагничивания.
Учёные встретили гипотезу Ампера доброжелательно, но она была недостаточна, потому что многое оставалось в тени. Например, наблюдения Фарадея, как ведут себя между полюсами магнита стержни из различных веществ. Их поведение позволило разделить все вещества на парамагнитные и диамагнитные. Стержни первых устанавливаются между полюсами вдоль силовых линий, стержни вторых – перпендикулярно к ним. Это явление объяснили позже, когда стало ясно строение атома.
Магнитные исследования Кулона помогли вывести законы взаимодействия магнитных полюсов, исследования Ампера – закон взаимодействия проводников с тЮками, а также проводника с током и магнита.
Некоторые из учёных объяснили взаимодействие магнитных полюсов, магнитного полюса и тока, проводников с током действием на расстоянии, без участия окружающей среды (теория дальнодействия). Другие придерживались мнения Майкла Фарадея: полюса взаимодействуют благодаря особому состоянию среды, которое вызывается присутствием магнитного полюса или проводника с током (теория близкодействия).
После открытия и исследования электромагнитной индукции стала очевидной возможность создать генератор, который сможет преобразовать механическую энергию в энергию электрическую. Первый генератор электрического тока, построенный в 1832, был весьма несовершенен.
К этому же времени относится начало целой серии работ М. Фарадея (1791-1867), одно лишь только формальное перечисление, которых способно составить объемный каталог, поэтому следует выделить наиболее значительное в этих исследованиях. Прежде всего, открытие явления электромагнитной индукции, во-вторых, явление вращения плоскости поляризации света в магнитном поле - первое экспериментальное доказательство связи между светом и магнетизмом, в-третьих, введение понятия “силового поля”.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода