Можно ли остановить время

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Взаимодействие между материальными точками (телами) определяется Третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей

эти точки:

F12=-F21

где F12 — сила, действующая на первую материальную точку со стороны второй; F21— сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

Время и тяготение.

Яблоко важный атрибут многих легенд, мифов и сказок. Запретный плод стал источником соблазна для Евы и в конечном счете, навлек гнев божий на род человеческий. Яблоко раздора послужило поводом к отправке тысячи кораблей в Трою и к долгой Троянской войне. Отравленное яблоко чуть не погубило Белоснежку и т. д.

Однако для физиков самая важная легенда связана с яблоком, которое упало в саду в Вулсторпе, Линкольншир, Англия, в 1666 г. Вот это-то яблоко и увидел Исаак Ньютон и “впал в глубокое раздумье о причине того, почему все тела притягиваются вдоль линии, которая, будучи продолжена, прошла бы почти точно через центр Земли”.

Цитата взята из вольтеровской “Philosophic de Newton”, опубликованной в 1738 г. и содержащей самое первое из известных изложений истории с яблоком. В ранних биографиях Ньютона она не встречается; не упоминает о ней и он сам, рассказывая о том, как размышлял о всемирном тяготении. Скорее всего, это легенда.

Стоит обратить внимание на то, сколь редко можно увидеть само падение яблока с дерева. Яблоко может провисеть несколько недель на ветке и, упав, пролежать на земле еще несколько дней. Но сколько времени занимает само падение с дерева на землю? Например, при падении с высоты 3 м время полета составляет три четверти секунды. Итак, чтобы увидеть падение яблока, нужно оказаться на месте в сей решающий весьма краткий период его жизни! Шансы стать свидетелем этого события, конечно, возрастут, если оказаться в яблоневом саду в подходящее время года, но все же само по себе это событие нельзя считать особенно частым.

Еще гораздо реже появляются такие гении, как Ньютон, сумевший из размышлений о подобном явлении вывести закон тяготения. Легенда гласит, что, задумавшись над тем, почему упало яблоко. Ньютон пришел в конце концов к закону всемирного тяготения. Ответ Ньютона: “Потому что его притягивает Земля” - гораздо глубже, чем кажется на первый взгляд, поскольку он помог разрешить не только загадку падающего яблока, но и ряд давнишних загадок нашей Солнечной системы.

Закон всемирного тяготения Ньютона утверждает, что сила взаимного притяжения любых двух материальных тел прямо пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. На компактном языке математики этот закон записывается так:

.

В этой формуле F-сила тяготения между двумя телами массой т и М соответственно, расположенными на расстоянии d друг от друга, а G-универсальная постоянная. Термин массами уже встречали: она определяется как количество вещества в теле, а также является мерой инерции тела. Теперь мы обнаруживаем еще одно свойство: масса - это мера гравитационного воздействия тела на другие тела, а также мера его восприимчивости к гравитационному влиянию других тел. Если увеличить т в формуле Ньютона в 10 раз, то и сила F соответственно увеличится в 10 раз. Если т уменьшается в 10 раз, то и сила F соответственно уменьшается в 10 раз. Вследствие этого свойства гравитация не играет заметной роли в поведении атомов и молекул, массы которых невообразимо малы, тогда как в астрономии, науке, имеющей дело с небесными телами очень больших масс, гравитация важна.

Рисунок1.Освещенность, которую создает источник света, уменьшается пропорционально квадрату расстояния от него. Эта особенность аналогичная уменьшению силы гравитационного взаимодействия точечных тел.

Вследствие уменьшения гравитации с расстоянием этот закон часто называют законом обратной пропорциональности квадрату расстояния. Таким законом описываются многие явления природы. Например, он справедлив и для освещенности, создаваемой светящимся телом. Если смотреть на лампочку мощностью 100 Вт с расстояния 5 м, то она кажется очень яркой. Та же лампочка с расстояния 50 м выглядит тусклой. Рассмотрим фиксированную площадку, расположенную перпендикулярно направлению световых лучей (рис. 1). Если расстояние до источника света увеличить в 10 раз (с 5 до 50 м), то количество света, падающего в секунду на эту площадку, в 100 (10 2 ) раз уменьшится. То же самое соотношение выполняется для силы гравитации F. Если увеличить расстояние d в 10 раз, то сила F станет в 102, или в 100 раз, меньше.

Здесь уместно спросить: “Почему гравитация важна в астрономии и несущественна в атомной физике, если в первой расстояния между объектами огромны, а во второй чрезвычайно малы?”. Ответ заключается в том, что, хотя по закону обратной пропорциональности квадрату расстояния сила гравитации и могла бы проявиться в масштабах атомов, другие, электромагнитные силы намного больше её.

Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле. Только ли Земля обладает свойством притягивать к себе тела, находящиеся вблизи ее поверхности? В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.

Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?

Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметного значения только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.

Черные дыры: время остановилось. Черные дыры - это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет.

С какой силой притягивает центральная масса какое-либо тело, находящееся на ее поверхности? Если радиус массы велик, то ответ совпадал с классическим законом Ньютона. Но когда принималось, что та же масса сжата до все меньшего и меньшего радиуса, постепенно проявлялись отклонения от закона Ньютона - сила притяжения получалась пусть незначительно, но несколько большей. При совершенно фантастических же сжатиях отклонения были заметнее. Но самое интересное, что для каждой массы существует свой определенный радиус, при сжатии до которого сила тяготения стремилась к бесконечности! Такой радиус в теории был назван гравитационным радиусом. Гравитационный радиус тем больше, чем больше масса тела. Но даже для астрономических масс он очень мал: для массы Земли это всего один сантиметр. В 1939 году американские физики Р.Оппенгеймер и Х. Снайдер точное математическое описание того, что будет происходить с массой, сжимающейся под действием собственного тяготения до все меньших размеров. Если сферическая масса, уменьшаясь, сожмется до размеров, равных или меньших, чем гравитационный радиус, то потом никакое внутреннее давление вещества, никакие внешние силы не смогут остановить дальнейшее сжатие. Действительно, ведь если бы при размерах, равных гравитационному радиусу, сжатие остановилось бы, то силы тяготения на поверхности массы были бы бесконечно велики и ничто с ними не могло бы бороться, они тут же заставят массу сжиматься дальше. Но при стремительном сжатии - падении вещества к центру - силы тяготения не чувствуются.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы