Сущность понятия, его содержание и объем
Для достижения определенных целей в рассуждениях нам приходится производить над понятиями определенные операции, т.е. подвергать их изменениям.
Операция обобщения понятия заключается в том, что для исходного понятия ищется более широкое понятие, которое является для него родовым. Если обобщение это переход от вида к роду, то ограничения понятия – это операция обратная по отношению к операци
и обобщения, и ее суть заключается в переходе от рода к виду. Обобщением понятия «студент» будет понятие «учащийся» и обратно, ограничением понятия «учащийся» будет понятие «студент».
Очевидно, что результат обобщения и ограничения понятия не определяется однозначно. Например, обобщением понятия «щелочной метал» будет и понятие «металл» и понятие «химический элемент». Обратно, ограничением понятия «химические элемент» будут и понятие «металл» и понятие «галоген» и т.д. Особый интерес для логики и познания вообще представляет деление понятия приводящее к более или менее однозначным результатам.
Деление понятия – это такое его ограничение, при котором ставится задача отыскания всех его видов. То понятие, объем которого делится, называется делимым. Виды, получаемые в результате деления – членами деления; а признак, по которому осуществляется деление, – основанием деления.
Частным и самым простым типом деления является дихотомическое деление, при котором по наличию или отсутствию какого-то признака (основание деления) объем понятия А делится на два противоречащих понятия В и не - В, полностью исчерпывающие объем делимого понятия. Так, понятие «почвы» дихотомически делятся на понятия «черноземные почвы» и «нечерноземные почвы». Понятие «лес» - на понятия «лиственный лес» и «не лиственный лес» и т.д.
Но дихотомическое деление не лишено недостатков. Разделив понятие на два противоречащих понятия, мы каждый раз оставляем слишком неопределенной ту часть объема понятия, которая содержит частицу «не». Если, например, нам известно, относительно ученых только то, что они делятся на «биологов» и «не биологов», то вторая группа крайне неопределенна.
В общем случае делимое понятие делится на соподчиненные понятия, причем некоторые из последних могут в свою очередь делится на соподчиненные и т.д. Например, в химии все вещества делят сначала на простые и сложные. Простые вещества делят на металлы и не металлы. Металлы в свою очередь делят на щелочные и не щелочные и т.д.
Чтобы деление не приводило к путанице, должны соблюдаться четыре правила деления.
1. При одном и том же делении необходимо применять одно и то же основание. Например, основанием деления треугольников на равносторонние, равнобедренные и разносторонние есть отношение длин сторон треугольников. Это деление правильное. Напротив, деление зданий на каменные здания, двухэтажные здания, здания, накрытые черепицей неправильно. В качестве основания деления здесь сначала взят признак «строительный материал», а затем в ходе деления он заменяется другими признаками.
2. Деление должно быть соразмерным, т.е. сумма объемов членов деления должно быть равна объему делимого понятия. Так, деление треугольников на остроугольные и тупоугольные несоразмерно: пропущен класс прямоугольных треугольников. Если мы не заметим этой ошибки, то мы можем пройти мимо теоремы Пифагора или, что еще хуже, применять ее к непрямоугольным треугольникам.
3. Члены деления должны исключать друг друга. Каждый предмет должен относиться только к объему какого-то одного видового понятия. Нельзя, например, делить числа на такие классы: а) числа, кратные двум; в) числа, кратные трем; с) числа, кратные пяти и т.д. В данном случае классы будут пересекаться. Например, число 10 при таком делении надо поместить и в первый и в третий класс.
4. Деление должно быть непрерывным. Это значит, что члены деления должны быть ближайшими видами по отношению к каждому делимому понятию. Так, вещества нельзя сразу делить на металлы и металлоиды. Надо сначала разделить вещества на простые и сложные, простые вещества затем делить на металлы и неметаллы и т.д.
Деление понятий, упорядочивающее члены деления по какому-то важному с практической или теоретической точки зрения признаку, принято называть классификацией. Значение правильных классификаций огромно. Можно, например, все книги университетской библиотеки разделить по цвету их переплетов на книги в сером переплете, красном и т.д., но такое деление не будет иметь никакого практического значения. Иное дело классификация книг в соответствие с систематическим и алфавитным каталогами. Она служит нам надежным компасом в океане книг.
Можно сказать, что ботаника, зоология, кристаллография, химия и многие другие дисциплины приобрели статус науки лишь тогда, когда они стали с помощью классификаций упорядочивать изучаемые явления.
4. ОПРЕДЕЛЕНИЕ ПОНЯТИЙ
Определение – это логическая операция с помощью, которой устанавливается содержание понятия. Обычно, определение производится путем указания на ближайший род и видовое отличие. Чтобы определить, например, биологию, мы отыскиваем ближайшее родовое понятие. Им будет понятие «наука», а не понятия «совокупность суждений» или «знание». Затем указываем видовой признак, отличающий биологию от физики, химии и других наук. Таким признаком будет то, что биология изучает закономерности жизни и развития живых тел. В итоге получается следующее определение: биология – это наука, изучающая закономерности жизни и развития живых тел.
Определение должно удовлетворять следующим трем правилам:
1. Оно должно быть соразмерным, т.е. объем определяющего понятия должен совпадать с объемом определяемого;
2. Оно не должно содержать круг, т.е. определяющее понятие должно определяться независимо от определяемого;
3. Оно должно быть ясным, четким, лишенным двусмысленности.
Например, определение «Диаметр есть отрезок прямой, соединяющий две точки окружности» слишком широкое, потому, что под него подпадают все хорды. Определение «Линза есть прозрачная для света среда, ограниченная с двух сторон выпуклыми поверхностями» слишком узкое, потому, что оно не охватывает вогнутые линзы; определение «Мошенник – это человек, занимающийся мошенничеством» содержит порочный круг. Не является определениями и суждения «Повторение – мать учения», «Скрипка – царица оркестра», «Дети – цветы жизни» и т.п., потому что они многозначны и метафоричны.
Конечно, любая наука стремится к тому, чтобы определить все свои понятия. Но легко видеть, что этот идеал не достижим. В самом деле, чтобы определить какое-то понятие она должна обратиться к более широкому ближайшему родовому понятию. Чтобы определить это понятие и избежать порочного круга – к новому понятию и т.д. Перед нами начало процесса, который уходит в бесконечность. Чтобы оборвать его, науки часто прибегают к описанию. Оно представляет собой перечисление рода признаков, которые могут быть включены в содержание понятия. Это делается посредством обычного текста, рисунков, графиков, цифр, схем, символов и т.п. Описания не являются определениями, а лишь подготавливают более глубокое изучение предмета.