Современная естественнонаучная картина мира
Планетарная модель строения атома Резерфорда и два постулата Бора
Рассеяние отдельных α-частиц на большие углы Резерфорд объяснил тем, что положительный заряд в атоме не распределен равномерно в шаре радиусом 10-10м, как предполагали ранее, а сосредоточен в центральной части атома (атомном ядре) в области значительно меньших размеров. Расчеты Резерфорда показали, что для объясн
ения опытов по рассеянию α-частиц нужно принять радиус атомного ядра равным примерно 10-15м.
Резерфорд предположил, что атом устроен подобно планетарной системе. Как вокруг Солнца на больших расстояниях от него обращаются планеты, так электроны в атоме обращаются вокруг атомного ядра. Радиус круговой орбиты самого далекого от ядра электрона и есть радиус атома. Такая модель атома была названа планетарной моделью.
Планетарная модель атома объясняет основные закономерности рассеяния заряженных частиц.
Так как большая часть пространства в атоме между атомным ядром и обращающимися вокруг него электронами пуста, быстро заряженные частицы могут почти свободно проникать через довольно значительные слои вещества, содержащие несколько тысяч слоев атомов.
При столкновениях с отдельными электронами быстрые заряженные частицы испытывают рассеяние на очень большие углы, так как масса электрона мала. Однако в тех редких случаях, когда быстрая заряженная частица пролетает на очень близком расстоянии от одного из атомных ядер, под действием силы электрического поля атомного ядра может произойти рассеяние заряженной частицы на любой угол до 180°.
Датский физик Нильс Бор (1885-1962) обосновал планетарную модель атома Резерфорда. Свои представления об особых свойствах атомов (устойчивости атома и спектральных закономерностей его излучения) Бор сформулировал в виде постулатов следующего содержания:
Электрон в атоме может находиться только в определенных устойчивых состояниях, называемых стационарными или квантовыми, каждому из которых соответствует определенная энергия En. В этих состояниях атом не излучает электромагнитных волн.
Момент импульса электрона, движущегося по стационарной орбите, имеет квантовые значения, удовлетворяющие условию: meυr = nħ (n = 1,2,3,…), где n – главное квантовое число, me – масса покоя электрона, υ – скорость электрона, r – радиус орбиты, ħ – постоянная Планка.
При переходе атома из одного стационарного состояния в другое испускается или поглощается квант энергии ΔE = hν.
Излучение фотона происходит при переходе атома из состояния с большей энергией в состояние с меньшей энергией. При обратном переходе происходит поглощение кванта энергии: hν = En - Em, где n и m – номера состояний.
Все стационарные состояния, кроме одного, являются стационарными лишь условно. Бесконечно долго каждый атом может находиться лишь в стационарном состоянии с минимальным запасом энергии. Это состояние атома называется основным. Все остальные стационарные состояния атома называются возбужденными.
Список использованной литературы
1. Гусейханов М.К., Раджабов О.Р. // Концепции современного естествознания: Учебник. - 6-е изд., перераб. и доп. - М.: Издательско-торговая корпорация "Дашков и К°", 2007. - 540 с.
2. Гуляев С.А., Жуковкий В.М., Комов С.В. // Оновы естествознания: Учебное пособие для гуманитарных направлений бакалавриата. 2-е издание. Испр. И доп. Екатеринбург: УРГУ, 1997.
3. Концепции современного естествознания. * // Рузавин Г.Н., М.: ЮНИТИ, 2007.
4. Концепции современного естествознания. * // Стрельников О.Н., М.: ЮРАЙТ, 2003.
5. Концепции современного естествознания. * // Садохин А.П., М.: ЮНИТИ, 2006.
[1] Вернадский В.И. Избранные труды по истории науки. М., 1981. С. 50.
[2] Панкратов И.С. Онтология рациональности. Век XXI // Философские дескрипты. Барнаул, 2002. Вып. 2. С. 208-213.
[3] А.Эйнштейн. Собрание научных трудов. М.: Наука. 1965. Т.1. С.689.
[4] А.Эйнштейн. Собрание научных трудов. М.: Наука. 1966. Т.2. С.154.