Правдоподобные рассуждения
Действительно, в статистических рассуждениях особое значение приобретают такие понятия, как генеральная совокупность (или популяция), с одной стороны, и выборка (или образец), с другой. При этом рассуждение может идти как от выборки к генеральной совокупности, так и от последней – к выборке. Ничего подобного не встречается в индукции. Более того, заключение от генеральной совокупности к выборке
, как рассуждение от общего к частному, можно считать специфическим видом дедукции, если придерживаться традиционного взгляда на нее. Кроме того, статистическая информация отображает результаты исследования массовых случайных или повторяющихся событий, ибо она истолковывается в терминах частотной интерпретации вероятности.
Несмотря на такое различие, между индуктивными и статистическими рассуждениями имеется много общего. Для нас особенно важным является тот метод статистических обобщений, который совершается от выборки к генеральной совокупности. Он стоит ближе к индукции, чем аналогия. В практическом отношении статистический метод обобщения играет наибольшую роль как в научных исследованиях, так и при принятии решений в других областях деятельности. Хорошо известно, что многочисленные прогнозы и оценки о результатах выборов, популярности тех или иных решений, рейтинге политических деятелей, предпочтениях избирателей и опроса населения делаются именно на основе анализа мнений и ответов сравнительно небольшой части людей, составляющих выборку, из некоторой генеральной совокупности. Для того чтобы прогнозы стали более надежными, необходимо стремиться к тому, чтобы структура выборки отражала структуру генеральной совокупности, из которой она получена.
Общая схема статистического обобщения весьма проста:
к % элементов образца обладают свойством Р.
Вероятно, к % элементов генеральной совокупности присуще свойство Р.
Вероятность такого вывода определяется, прежде всего, двумя условиями:
1) размерами выборки, ибо, чем больше ее размеры, тем больше элементов всей совокупности доступно для проверки, и тем выше будет вероятность заключения, относящаяся к характеристике генеральной совокупности;
2) репрезентативности выборки, т.е. выборка, полученная из всей совокупности, должна адекватно отражать распределение свойств и отношений в генеральной совокупности. Очевидно, что свойство (или отношение), встречающееся только в выборке, нельзя без корректировки переносить на всю совокупность.
Существует тщательно разработанная методика и техника проведения выборки, главная цель которой состоит в обеспечении репрезентативности выборки. Так, для проведения опросов населения особое внимание должно быть уделено его стратификации (группировке) по возрастным, национальным, имущественным, образовательным и другим признакам, чтобы результаты исследования выборки можно было перенести на всю генеральную совокупность, а полученный вывод оказался более правдоподобным.
Многочисленные примеры явно неудачных прогнозов свидетельствуют о нарушении этого требования. Наиболее впечатляющим примером такого рода был прогноз о вероятности выбора президентом США Ф.Д. Рузвельта. По всем данным опросов победить на выборах должен был его противник из республиканской партии, шансы которого оценивались как 2:1. Последующий анализ показал, что выборка была связана с явным игнорированием стратификации избирателей, в особенности по доходам. Опрашивались преимущественно состоятельные люди, которые меньше всего пострадали от Великой депрессии 1929-1933 гг. К тому же опрос проводился по телефону, а в 1936 г. они имелись далеко не у всех избирателей. Значительная часть населения, пострадавшая от депрессии, не учитывалась в выборках опросов. Но именно она с энтузиазмом восприняла предвыборную программу Рузвельта и вопреки официальным прогнозам обеспечила ему внушительную победу на президентских выборах 1936 г.
ЗАКЛЮЧЕНИЕ
Нередко ошибочность прогнозов связана с нарушением принципа рандомизации, который требует, чтобы отбор элементов выборки был непредвзятым. Это означает, что каждый элемент из генеральной совокупности с одинаковой вероятностью мог быть включенным в состав выборки. Нередко нарушение этого требования происходит неосознанно в силу тех или иных субъективных факторов: склонностей, предубеждений, устоявшихся стереотипов мышления и т.п. Бывает, однако, немало и таких случаев, когда в угоду властям, успокоению народа, ложно понятому патриотизму и т.д. сознательно нарушается принцип рандомизации, чтобы обеспечить благоприятный прогноз.
Другая схема статистического рассуждения связана с умозаключениями от генеральной совокупности к выборке, которая внешне напоминает дедуктивные умозаключения. Но по своей логической структуре они принципиально отличаются друг от друга, хотя бы потому, что в дедуктивном умозаключении по правилам логического вывода из истинных посылок получают достоверно истинные заключения. В статистическом рассуждении, в принципе, всегда возможен такой случай, когда большинство членов генеральной совокупности будут обладать некоторым свойством Р, а в выборке могут найтись такие члены, которые этим свойством не будут обладать. Так, большинство растений, обработанных определенным препаратом, будут лучше плодоносить, но на некоторые растения препарат не подействует. Техника и критерии исследования, как всей совокупности, так и выборки из нее, в статистических умозаключениях мало чем отличаются друг от друга.
Более обоснованным является другой подход, при котором индукция рассматривается как особый случай статистических рассуждений, и такие взгляды сейчас высказываются многими учеными. Преимущество такой точки зрения перед традиционными взглядами состоит в следующем: при статистическом обобщении не просто постулируют, что заключение правдоподобно, как при индукции, а определяют в количественной мере (в процентах) степень вероятности заключения на основе исследования выборки. Для научных и практических прогнозов такая количественная характеристика имеет особенно важное значение, когда приходится действовать в условиях неопределенности.
правдоподобность вероятность предположение гипотеза
ЛИТЕРАТУРА
1. Бочаров В.А, Маркин В.И. Основы логики. – М.: Космополис, 2008.
2. Гетманова А.Д. Учебник по логике. – М.: Владос, 2007.
3. Ивин А.А. Элементарная логика. – М.: "Дидакт". 2007.
4. Ивлев Ю.В. Логика. – М.: Изд-во МГУ, 2009.
5. Кириллов В.И., Старченко А.А. Логика. – М.: Высшая школа, 2006.
6. Никифоров А.Л. Книга по логике. – М.: ГНОЗИС, 2006.
7. Свинцов В.И. Логика. – М.: Высшая школа, 2007.
8. Уёмов А.И. Задачи и упражнения по логике. – М.: Высшая школа,2006.
9. Рузавин Г.И. Логика и аргументация: Учебн. пособие для вузов. М.: Культура и спорт, ЮНИТИ, 2007. - 351 с.
10. Меськов B.C., Карпинская О.Ю., Ляшенко О.В., Шрамко Я.В. Логика: наука и искусство. – М.: Высшая школа, 2006.
11. Гжегорчик А. Популярная логика. – М.: Наука, 2009.
12. Ивин А.А. Строгий мир логики. – М.: Педагогика, 2009.