Имитационное моделирование в анализе рисков инвестиционного проекта

Алгоритм решения задачи подбора закона распределения:

1) определить возможные границы изменения риск-переменной (границы диапазона);

2) выбрать общий вид закона распределения;

3) с учетом диапазона изменения переменной и общего вида оценить основные числовые характеристики закона распределения (непрерывный случай) или приписать возможным значениям риск-переменной вероятности их реал

изации (дискретный случай).

Как следует из вышеизложенного, процесс подбора законов распределения является в значительной степени творческим процессом, требует анализа различного вида информации и плохо поддается формализации.

Необходимо отметить, что проблема выбора типа распределения вероятностей очень важная, так как точность подбора закона распределения при заданных границах изменения риск-переменных непосредственно влияет на качество модели и точность оценки .распределения вероятностей NPV и другие результаты моделирования.

Отсутствие учета вероятностной зависимости переменных, в частности, коррелированное, может привести к заметным искажениям результатов статистического моделирования. Включение вероятностно зависимых риск-переменных в математическую модель инвестиционного проекта может привести к серьезным искажениям характеристик устойчивости проекта, если условие зависимости не будет учтено в математической модели. Степень смещения результатов зависит от важности вероятностно зависимых переменных по отношению к проекту. Поэтому проводится специальный этап установления наличия вероятностной зависимости, в частности, корреляции между переменными и поиска возможностей ее учета в модели. Это касается как парной, так и множественной корреляции.

2.2 Осуществление имитации

Основным этапом имитационного моделирования, в рамках которого с помощью компьютерной программы и реализован алгоритм метода Монте-Карло, является этап осуществления имитации. Он выполняется следующим образом:

1. Генерирование случайных чисел производится путем компьютерной операции получения псевдослучайных чисел, независимых и равномерно распределенных на отрезке [0; 1]. Каждое новое полученное случайное число рассматривается как значение функции распределения для соответствующей риск-переменной.

2. Значение каждой независимой риск-переменной восстанавливается как аргумент функции распределения вероятностей данной риск-переменной. При этом учитывается существование вероятностной зависимости.

3. Значения переменных величин подставляются в модель и рассчитывается интегральный показатель эффективности проекта (NPV или другой показатель, например, IRR, PI и т.д.)

4. Изложенный в пп. 1—3 алгоритм повторяется n раз. Результаты моделирования (т.е. NPV проекта или другой показатель), таким образом, рассчитываются и сохраняются для каждого имитационного эксперимента.

Каждый имитационный эксперимент — это случайный сценарий. Количество имитационных экспериментов или случайных сценариев должно быть достаточно велико, чтобы сделать выборку репрезентативной по отношению к бесконечному числу возможных комбинаций.

Размер случайной выборки n зависит от количества переменных в модели, от диапазона значений риск-переменных и от желаемой точности получения результатов.

На этом же этапе возникает проблема определения погрешности результатов моделирования в зависимости от количества выполненных имитационных экспериментов. Выбор (n) имеет огромное значение для оценки качества модели, т.е. точности подбираемого закона распределения NPV и его характеристик.

2.3 Анализ результатов

Финальным этапом процесса риск-анализа являются анализ и интерпретация результатов, полученных на этапе имитации.

Анализ результатов имитационного моделирования можно разделить на два типа: графический анализ и анализ количественных показателей.

Результатом проведения имитационных экспериментов является выборка из n значений NPV (или другого результирующего показателя). Вероятность каждого случайного сценария равна:

P(i) = 1/n,

где n - количество имитационных экспериментов.

Следовательно, вероятность того, что проектный результат будет ниже определенного значения равна количеству результатов, при которых значение показателя было ниже этого значения, умноженному на вероятность реализации одного наблюдения.

Построив график кумулятивного распределения частот появления результатов, можно рассчитать значение вероятности того, что результат проекта будет ниже или выше заданного значения.

Для проведения графического анализа необходимо построить функции распределения вероятностей и плотности распределения вероятностей результирующего показателя (NPV или другого). В проектном анализе они называются соответственно кумулятивным профилем риска и профилем риска.

Таким образом, необходимо построить гистограмму NPV. Построение гистограммы является важным моментом в анализе результатов имитационного моделирования, так как она позволяет подобрать закон распределения результирующего показателя. По полученному массиву NPV строится вариационный ряд, т.е. значения NPV ранжируются от минимального до максимального.

Гистограмма строится путем разбиения вариационного ряда на k интервалов группирования. Выбор k осуществляется в соответствии с рекомендациями математической статистики. Далее оценивается согласованность эмпирических данных с подбираемым законом распределения с помощью критерия согласия х2.

Стандартные дисконтированные критерии принятия инвестиционного решения, обычно применяемые в детерминированном анализе, сохраняют свое значение и для данного метода. Однако, поскольку риск-анализ предоставляет лицу, принимающему решение, дополнительную информацию о проекте, инвестиционное решение может быть соответствующим образом изменено. Финальное решение, поэтому, субъективно и принимается почти всегда в зависимости от отношения (склонности) инвестора к риску.

Общее правило состоит в том, что выбирается проект с таким распределением вероятностей дохода, которое больше соответствует предрасположенности к риску лица, принимающего решение (ЛПР). Если ЛПР является «склонным к риску», оно с большей степенью вероятности выберет для инвестирования проекты с относительно высоким значением NPV, обращая меньше внимания на связанный с этим риск (разброс относительно среднего значения, значительную вероятность реализации неэффективного проекта и т.д.). Если ЛПР очень «нерасположенное к риску», то скорее всего оно выберет для инвестирования проекты с небольшим, но достаточно безопасным значением (менее рисковым) NPV.

Предполагая, что ЛПР нейтрально по риску, рассмотрим ситуации, связанные с принятием решения в случае единственного и в случае альтернативных (взаимоисключающих) проектов. Решение принимается, исходя из графического отображения распределения вероятностей (частот) NPV. Функция распределения вероятностей NPV чаще применяется для принятия решений, касающихся взаимоисключающих проектов, в то время .как плотность распределения вероятностей лучше применять для выявления моды распределения и для анализа показателей, использующих ожидаемое значение.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Финансы, деньги и налоги»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы