Анатомия человека
Постоянство температуры внутри клетки также способствует оптимальному течению в ней химических реакций. Организм человека удерживает температуру тела на определенном уровне. Жизненные процессы в организме протекают в узких температурных границах: при температуре от 22 °C до 43 °C. Повышение температуры живых тканей выше 45-47 °С сопровождается необратимыми изменениями и прекращением жизни из-за
свертывания белков и инактивации ферментов. При температуре ниже 22 °C наступает торможение работы клетки, обусловленное значительным замедлением обмена веществ и энергии.
Функционирование подсистемы, обеспечивающей выполнение специальных функций, также невозможно без механизма обратной связи, поддерживающего гомеостаз в клетке. Например, в системе гормональной регуляции постоянный уровень, в частности, кортикостероидов поддерживается благодаря такому механизму. Гипофиз отслеживает концентрацию данных гормонов в крови и при ее уменьшении выделяет в кровь адренкортикотропный гормон (АКТГ). АКТГ стимулирует образование кортикостероидов в корковом веществе надпочечников, концентрация гормонов увеличивается. При повышенном уровне гормонов, наоборот, идет сигнал на прекращение выработки АКТГ.
Клеточный рецептор — молекула (обычно белок) на поверхности клетки, клеточных органелл или растворенная в цитоплазме, специфически реагирующая изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передающая этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов. Вещество, специфически соединяющееся с рецептором, называется лигандом этого рецептора. Внутри организма это обычно гормон или нейромедиатор либо их искусственные заменители, применяемые в качестве лекарственных средств и ядов (агонисты). Некоторые лиганды, напротив, блокируют рецепторы (антагонисты). Когда речь идет об органах чувств, лигандами являются вещества, воздействующие на рецепторы обоняния или вкуса. Кроме того зрительные рецепторы реагируют на свет, а в органах слуха и осязания рецепторы чувствительны к механическому давлению, вызываемому колебаниями воздуха и иными воздействиями.
Существуют следующие виды рецепторов:
Природа раздражителя |
Тип рецептора |
• электрическое поле |
• ампула Лоренцини |
• атмосферное давление |
• барорецептор |
• химическое вещество |
• хемосенсор |
• влажность |
• гидрорецептор |
• механическое напряжение |
• механорецептор |
• повреждение тканей |
• ноцирецептор |
• осмотическое давление |
• осморецептор |
• свет |
• фоторецептор |
• положение тела |
• проприоцептор |
• температура |
• терморецептор |
• электромагнитное излучение |
• электромагнитные рецепторы |
Клеточные рецепторы можно разделить на два основных класса - мембранные рецепторы и внутриклеточные рецепторы.
Два основных класса мембранных рецепторов — это метаботропные рецепторы и ионотропные рецепторы. Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводитъ к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор. Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки. Основные типы мембранных рецепторов:
1. Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
2. Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецептор инсулина).
Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме.
Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивирует фермент, продуцирующий вторичные посредники.
Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаны дисульфидными мостиками. Внутриклеточные рецепторы - как правило, факторы транскрипции (например, рецепторы глюкокортикоидов) или белки, взаимодействующие с факторами транскрипции. Большинство внутриклеточных рецепторов связываются с лигандами в цитоплазме, переходят в активное состояние, транспортируются вместе с лигандом в ядро клетки, там связываются с ДНК и либо индуцируют, либо подавляют экспрессию некоторого гена или группы генов.
Особым механизмом действия обладает оксид азота (NO). Проникая через мембрану, этот гормон связывается с растворимой (цитозольной) гуанилатциклазой, которая одновременно является и рецептором оксида азота, и ферментом, который синтезирует вторичный посредник - цГМФ.
Большинство обычных сенсорных рецепторов (химических, температурных или механических) деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт к высвобождению медиатора из аксонных окончаний. Однако существуют исключения: при освещении колбочки потенциал на её мембране возрастает — мембрана гиперполяризуется: свет, повышая потенциал, уменьшает выделение медиатора.
Основные системы внутриклеточной передачи гормонального сигнала
Аденилатциклазная система. Центральной частью аденилатциклазной системы является фермент аденилатциклаза, который актализирует превращение АТФ в цАМФ. Этот фермент может либо стимулироваться Gs-белком (от английского stimulating), либо подавляться Gi-белком (от английского inhibiting). цАМФ после этого связывается с цФМФ-зависимой протеинкиназой, называемой так же протеинкиназа А, PKA. Это приводит к ее активации и последующему фосфорилированию белков-эффекторов, выполняющих какую-то физиологическую роль в клетке.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики