Свойства горных пород. Процесс внутренней динамики Земли
- СП 2.1.5.1059 «Гигиенические требования к охране подземных вод от загрязнения»
- СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»
- ГН 2.1.5.1315-03 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользовани
я».
- ГН 2.1.5.2280-07 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. Дополнения и изменения №1 к ГН 2.1.5.1315-03».
- ГН 2.1.5.2307-07 «Ориентировочные допустимые уровни (ОДУ) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования».
· Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.
· Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, а также в точках водоразбора наружной и внутренней водопроводной сети.
· Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим и паразитологическим показателям.
· Благоприятные органолептические свойства воды определяются ее соответствием нормативам, а также нормативам содержания веществ, оказывающих влияние на органолептические свойства воды.
· Не допускается присутствие в питьевой воде различимых невооруженным глазом водных организмов и поверхностной пленки.
· Радиационная безопасность питьевой воды определяется ее соответствием нормативам по показателям общей х - и Р- активности.
Агрессивное воздействие воды на бетон обусловлено капиллярно-пористой структурой. Проникающая в бетонные сооружения снизу грунтовая вода содержит примеси солей: хлоридов, сульфатов и гидрокарбонатов. Кристаллизуясь и гидратируясь в порах, соли многократно увеличиваются в объеме, что ведет в итоге к деструкции материала.
Грунтовые воды, мигрируя по капиллярам стен, могут вымывать водорастворимые соли из бетона, содержащего хлориды и сульфаты уже в исходном сырье. Это приводит к дальнейшему разветвлению капиллярно-пористой сети и преждевременному разрушению.
Вода проникает и сверху, со стороны атмосферных осадков. Это воздействие помимо механических разрушений, связанных с процессами замораживания-размораживания, имеет еще и химические последствия. Дождевые потоки захватывают из атмосферы большое количество газообразных про-изводственных выбросов, таких как оксиды углерода, серы, азота и фосфора, таких как аммиак, хлор и хлористый водород. Эти газы, растворяясь частично в воде, превращают дождь в кислотный раствор, разрушающе действующий на бетон. При этом увеличивается количество пор, капилляров и микротрещин, являющихся все новыми очагами агрессии, и степень разрушения материала существенно возрастает. Кроме того, содержание в воздухе кислотных оксидов серы и азота, а также хлористого водорода способно вызвать смещение такого экологического параметра атмосферы как углекислотное равновесие. При этом существен-но повышается содержание в воздухе свободной углекислоты, называемой в таком случае "агрессивной". Агрессивным углекислый газ является по отношению к бетону, превращая нерастворимый кальцит СаСО3 в водорастворимый гидрокарбонат кальция Са(НСО3)2:
СаСО3 + СО2 + Н2О = Са(НСО3)2
Где:
- Ca – кальций, Co – кобальт, H2O - вода
В результате под действием дождя идет постепенное вымывание растворимой соли.
Агрессивное воздействие воды к металлам обусловлено обработкой воды хлором или процессами коагуляции и флокуляции, происходящими в воде непосредственно на станции водоподготовки. Агрессивность может быть обусловлена содержанием в воде кислорода, хлора, карбонатов и бикарбонатов. Агрессивность уменьшается при возрастании уровня кислотности и жесткости и возрастает при повышении температуры и содержании растворенных воздуха и углекислого газа. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии. Для железа, меди, никеля, цинка она составляет 50-70%. Иногда для сохранности изделий, имеющих историческую ценность, их температуру искусственно поддерживают выше точки росы. В закрытых пространствах (например, в упаковочных коробках) влажность понижают с помощью силикагеля или других адсорбентов. Агрессивность промышленной атмосферы определяется, в основном продуктами сгорания топлива. Уменьшению потерь от коррозии способствует предотвращение кислотных дождей и устранение вредных газовых выбросов. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящимися в контактирующей с ними воде. Пример (кислородная коррозия железа в воде):
4Fe + 2Н2О + ЗО2 = 2(Fe2O3•Н2О)
Где: Fe железа, H2O - вода, O – кислород, Fe2O3 - оксиды железа
Солнечная радиация - электромагнитное и корпускулярное излучение Солнца. Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк - от радиоволн до рентгеновских лучей - однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра. Солнечная радиация сильно влияет на Землю только в дневное время, безусловно - когда Солнце находится над горизонтом. Также солнечная радиация очень сильна вблизи полюсов, в период полярных дней, когда Солнце даже в полночь находится над горизонтом. Однако зимой в тех же местах Солнце вообще не поднимается над горизонтом, и поэтому не влияет на регион. Солнечная радиация не блокируется облаками, и поэтому всё равно поступает на Землю (при непосредственном нахождении Солнца над горизонтом). Солнечная радиация - это сочетание ярко-жёлтого цвета Солнца и тепла, тепло проходит и сквозь облака. Солнечная радиация передаётся на Землю посредством излучения, а не методом теплопроводности.
9. Описать методы инженерно-геологические исследования
Во всех случаях исследования должны начинаться со сбора имеющихся материалов о природных условиях района (геологическом строении, гидрогеологических условиях, климате, гидрологии, почвенном покрове, топографии). Инженерно-геологические работы обычно выполняют в три этапа:
1) подготовительный;
2) полевой;
3) камеральный.
Эту работу выполняют в подготовительный период до начала полевых работ; изучают материалы, хранящиеся в геологических фондах и других организациях, опубликованные работы, собирают данные об опыте строительства и эксплуатации аналогичных сооружений в местных природных условиях. Тщательный сбор и анализ имеющихся материалов, дополнительный в ряде случаев рекогносцировочным обследованием района, позволяет целенаправленно составить программу исследований и значительно сократить объём их работ. После проведения необходимых организационно-хозяйственных мероприятий изыскательский отряд и приступает к работам (съёмка, буровые, геофизические и другие работы). Окончательная обработка полевых материалов и результатов лабораторных анализов производится в стационарных условиях в течение камерального периода. Камеральная обработка материалов завершается составлением инженерно-геологического и гидрогеологического отчётов. Объём выполняемых инженерно-геологических исследований бывает различен.
Другие рефераты на тему «Геология, гидрология и геодезия»:
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин