Регулирующий клапан прямого действия

Находим колебательность системы, которое характеризуется числом колебаний регулируемой величины за время переходного процесса.

h = 3 (т. к. Четвертая волна не до конца).

Время нарастания регулируемой величины:

tн(tмах) = 13 с.

Время первого согласования, т.е. время, когда регулируемая величина первый раз дост

игает своего установившегося значения:

t1 = 7 с.

б) Косвенная оценка качества:

Рассмотрим амплитудно-частотную характеристику процесса.

Построим график амплитудно-частотной функции А(ω):

По графику проводим анализ:

1. Находим показатель колебательности – М.

, где Amax = 4,7545, A(0) = 1.

Следовательно М = 4,7545.

2. Резонансная частота ωр = 0,243, при Amax = 4,7545.

3. Частота среза при которой амплитудно-частотная характеристика достигает величины равной 1.

ωср = ± 0,3438.

Время переходного процесса и частота среза связаны соотношением:

tП ≈ (1÷2) 2π/ ωср ≈ (1÷2) 18,27 (с).

4. Полоса пропускания частот определяется:

Откладываем получившееся значение от Amax.

Получаем полосу пропускания:

ω1 = 0,2154 и ω1 = 0,2682.

3. Исследуем систему с уравнением

на устойчивость.

Для этого перейдем от дифференциального уравнения к операторной форме.

- оператор дифференцирования, подставим его в данное уравнение.

Получаем характеристическое уравнение:

,

Находим корни квадратного уравнения:

р = -1/Т1 = -1,163.

Получили устойчивое состояние, т. к. αi < 0, т. е. все корни характеристического уравнения находятся в левой полуплоскости.

Проведем оценку качества системы.

а) Прямая оценка качества:

Находим передаточную функцию W(p):

Запишем переходную функцию.

Построим график переходной функции h(t):

Так как система является устойчивой и график переходной функции не имеет колебаний, то можно определить только максимальное значение регулируемой величины, которое будет равно установившемуся:

hмах = hуст = 1.

Определим перерегулирование:

б) Косвенная оценка качества:

Рассмотрим амплитудно-частотную характеристику процесса.

Для этого находим частотную форму передаточной функции.

Построим график амплитудно-частотной функции А(ω):

По графику проводим анализ:

1. Находим показатель колебательности – М.

, где Amax = 1, A(0) = 1.

Следовательно М = 1.

2. Резонансная частота ωр = 0, при Amax = 1.

3. Частота среза при которой амплитудно-частотная характеристика достигает величины равной 1.

ωср = ± 0.

4. Полоса пропускания частот определяется:

.

Откладываем получившееся значение от Amax.

Получаем полосу пропускания:

ω = 1,155.

Вывод: после выбора и анализа элемента получили, что данный клапан можно применять как регулирующий клапан прямого действия (без дополнительных устройств) и как клапан непрямого действия (вводя дополнительные устройства управления). В первом случае на систему действуют инерционные силы, процесс регулирования становится более длительным и может быть неточным. При анализе элемента получили устойчивую систему, но процесс перерегулирования длится дольше, чем допустимое значение. Колебательность системы также выше приемлемого числа колебаний. Это говорит о том, что в процессе регулирования могут происходить сбои в работе, процесс становится нестабильным. Регуляторы прямого действия просты в конструктивном отношении и надежны в эксплуатации, что объясняет их широкое применение для поддержания постоянного давления или перепада давлений воды на тепловых пунктах небольшой и средней мощности. Однако регуляторы прямого действия имеют меньшую чувствительность, поэтому рекомендуется применять при автоматизации объектов со сложными динамическими характеристиками регуляторы непрямого действия, так как они обеспечивают более широкий диапазон регулирования, возможность введения обратной связи и осуществление многоимпульсного регулирования. В нашем случае пневматический клапан применяется в системе с инерционным объектом, т. е. мы можем применять клапан, например с регулятором давления. Это позволяет получить устойчивую систему, как во втором случае.

Таблица 1 Характеристики материалов, применяемых для пружин

Марка материала или класса проволоки

Диаметр d в мм

Механические свойства

Пределы температур, при которых могут работать пружины, в ˚С

Отличительные свойства материала

проволоки

прутка

Допускаемое напряжение при кручении τкр в кгс/мм2

Модуль сдвига G в кгс/мм2

П

0,2 – 0,8

0,6 σв

8000

от –40 до +120

Высокие механические свойства

В

0,2 – 0,8

0,6 σв

» –40 » +120

То же и устойчивая деформация

65Г

Свыше 5,0

50

» –40 » +120

Повышенная чувствитель-ность к перегревам и к образованию закалочных трещин

60С2

» 5,0

75

» –40 » +250

Повышенная склонность к обезуглероживанию пове-рхности при термооб-работке

50ХФА

0,5 – 14,0

» 5,0

75

» –40 » +400

Устойчивая деформация

4Х13

1,0 – 6,0

» 5,0

45

» –40 » +400

Высокая коррозионная стойкость

60С2Н2А

» 5,0

100

» –40 » +250

Повышенная склонность к обезуглероживанию пове-рхности при термооб-работке

Бр. КМц 3-1

0,3 – 10,0

45

400

» –40 » +200

Высокая коррозионная стойкость и антимаг-нитность

Бр. ОЦ 4-3

0,3 – 10,0

40

» –40 » +200

То же

Страница:  1  2  3  4  5 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы