Спутниковые системы навигации GPS и ГЛОНАСС
S1 , м |
S2 , м | |
погрешности ЭИ |
4,0 .4,6 | op >
5,5 |
погрешности ЧВП |
4,2 |
4,2 |
шумы (T0=1c) |
2,0 |
3,0 .6,0 |
тропосфера |
0,3 |
1,5 .3,0 |
многолучевость |
- |
0 .3,0 |
Итого |
6,2 .6,6 |
7,7 .9,6 |
В шестиканальной НАП на наземном подвижном объекте максимальные (0,95) инструментальные погрешности определения местоположения объекта в горизонтальной p и вертикальной z плоскостях связаны с инструментальными погрешностями псевдодальности до “высокого” (околозенитного) НКА (S1) и до “низкого” (пригоризонтного) НКА (S2) следующим образом (см. выше):
в лучших ситуациях p = 2,0 (S2); z = 2,0 (a);
в худших ситуациях p = 2,2 (S2); z = 2,2 (a),
где
(a) = [4 2(S1)+2 2(S2)]1/2.
Используя эти формулы и полученные выше значения инструментальных погрешностей псевдодальностей , найдем оценки максимальных инструментальных погрешностей определения местоположения наземных динамичных (T0=1 с) объектов при использовании узкополосных навигационных радиосигналов в однодиапазонной шестиканальной НАП (1600 МГц):
1. в лучших ситуациях (S1) = 6,2 м; (S1) = 7,7 м и соответственно p = 15,4 м; z = 34 м;
2. в худших ситуациях (S1) = 6,6 м; (S1) = 9,6 м и соответственно p = 21 м; z = 42 м.
Строгая оценка вклада ионосферных погрешностей определения координат наземного объекта при применении однодиапазонной НАП является достаточно сложной задачей, дадим приблизительный анализ.
В предыдущем разделе были оценены ионосферные погрешности измерения псевдодальностей в однодиапазонной НАП. Было показано, что ионосферная погрешность псевдодальности (дальности) до пригоризонтного НКА ( =5 10 ) равна R2=3 R1, где R1 ионосферная погрешность дальности при вертикальном радиолуче. Ионосферные погрешности псевдодальностей в сеансе зависят от времени проведения сеанса: минимальны ночью, максимальны днем.
Пусть наземный объект находится под пересечением двух орбитальных колец , и в сеансе навигации используются шесть НКА: два околозенитных и четыре пригоризонтных . Очевидно, что если сеанс навигации проводится в околополуденное время, то ионосферные погрешности псевдодальностей для пригоризонтных НКА будут мало отличаться друг от друга и соответственно четыре разности между псевдодальностью до пригоризонтного и до зенитного НКА будут приблизительно одинаковы D = R2- R1=2 R1. В этой ситуации ионосферные погрешности определения координат наземного объекта в сеансе навигации в околополуденное время можно оценить как
z=2 D=4 R1; x, y= 0,5 D= R1.
Если сеанс навигации проводится в утреннее или вечернее время, то ионосферные погрешности псевдодальностей до пригоризонтных НКА будут сильно отличаться , и для таких сеансов навигации ионосферные погрешности определения координат можно приблизительно оценить как: x, y, z = 2 R1, где R1 ионосферная погрешность псевдодальности до зенитного НКА в дневное время.
Если наземный объект равноудален от трех орбитальных колец, то в сеансе навигации нет околозенитного НКА, и “высокие” НКА имеют углы возвышения 1 = 41 . 45 . Ионосферные погрешности определения координат наземного объекта в таком сеансе навигации будут не больше, чем в сеансе, в котором имеется околозенитный НКА.
Таким образом, в сеансах навигации наземных объектов при использовании шестиканальной однодиапазонной НАП максимальные ионосферные погрешности определения координат объекта можно оценить следующим образом:
x, y = (1 .2) R1; z = (2 .4) R1,
где R1 ионосферная погрешность при вертикальном радиолуче в дневное время.
В худший сезон (зимний день) в годы максимальной солнечной активности R1 = 15 м. Следовательно, максимальные ионосферные погрешности определения местоположения наземного объекта составят
p = [( x)2+( y)2]1/2 = 21 .42 м; z = 30 .60 м.
Приведем полученные оценки максимальных суммарных (инструментальных и ионосферных) погрешностей глобальной навигации в СРНС ГЛОНАСС при использовании узкополосных навигационных радиосигналов 1600 МГц в шестиканальной НАП на динамичных (T0 = 1с) наземных объектах в годы максимальной солнечной активности:
p, м |
z, м | |
инструментальные (0,95) |
15 .21 |
34 .42 |
ионосферные в худший сезон |
21 .42 |
30 .60 |
Итого |
36 .63 |
64 .102 |
В годы минимальной солнечной активности ионосферные погрешности будут в 5 .6 раз меньше, и соответственно максимальные суммарные погрешности глобальной навигации наземных подвижных объектов составят:
p, м |
z, м | |
инструментальные (0,95) |
15 .21 |
34 .42 |
ионосферные в худший сезон |
5 .7 |
6 .10 |
Итого |
20 .28 |
40 .52 |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем