Проектирование схемы трехфазного регулируемого выпрямителя
5. Амплитуда и действующее значение синхронизирующего напряжения при максимальном напряжении сети:
6. Амплитуда прямого тока через диод ограничителя при максимальном напряжении сети:
7. Действующее значение тока в обмотке синхронизации при :
8. Производим расчет интегратора DA1. В качестве операционного усилителя используем микросхему AD8079 от Analog Devices, Inc. с параметрами: напряжение питания , максимальное входное напряжение , выходное напряжение , входной ток , ЭДС смещения , диапазон рабочих температур (-40…+85°С).
9. Определяем постоянную интегрирования С1R2. Для этого предварительно определим напряжения . При U=0 находим , где - амплитуда пилообразного напряжения.
Напряжение определим из условия периодичности напряжения на выходе интегратора:
при
при
При , получим:
,
откуда постоянная интегрирования:
Для обеспечения режима линейного интегрирования задаемся амплитудой напряжения на выходе интегратора из условия , где - минимальное выходное напряжение микросхемы AD8079.
Принимаем , тогда:
10. Выбираем такой резистор R2, чтобы падение напряжения на нем, обусловленное входным током ОУ, составляло не более 5…10% входного напряжения. С другой стороны, номинал резистора R2 должен обеспечивать получение реализуемой емкости конденсатора С1. Принимаем . Тогда сопротивление резистора R2:
Выбираем стандартный резистор с сопротивлением 10кОм.
11. Емкость интегрирующего конденсатора:
.
Для получения требуемой емкости соединяем параллельно два стандартных конденсатора емкостью 30нФ и 1,5нФ.
12. С целью стабилизации режима работы по постоянному току интегратор охвачен отрицательной обратной связью через резистор R4, сопротивление которого выбираем так, чтобы постоянная времени цепи С3, R4 была хотя бы на порядок больше постоянной интегрирования С3R2. Принимаем R4=10R2=100кОм.
13. Для уменьшения погрешности интегрирования, обусловленной входным током микросхемы, включаем резистор R3, сопротивление которого выбираем из условия:
Выбираем стандартный резистор с сопротивлением 9,1кОм.
Расчет компаратора напряжения.
1. Определим сопротивление резистора R5. Поскольку амплитуда пилообразного напряжения, действующая на инвертирующем входе компаратора, , то по соображениям, приведенным в п. 10 раздела 3.1, находим:
Выбираем стандартный резистор с сопротивлением 18кОм.
2. Определяем емкость разделительного конденсатора С2. Конденсатор С2 не пропускает постоянную составляющую выходного напряжения интегратора, которая возникает из-за смещения «нуля», а также из-за неидентичности диодов VD1, VD2, на вход компаратора.
Емкость конденсатора выбираем из условия:
,
где - период синхронизирующего напряжения.
Примем
Выбираем стандартный конденсатор емкостью 1,5мкФ.
3. На неинвертирующий вход компаратора подаем напряжение управления , снимаемое с резистора R6. Делитель напряжения R10, R11, R6 обеспечивает изменение угла регулирования в нужном диапазоне . Напряжение, подаваемое на неинвертирующий вход компаратора и обеспечивающее минимальный угол регулирования . Т.к.
,
то напряжение для угла регулирования :
При :
Значит, переменный резистор R6, изменяя свое сопротивление от 0 до максимального значения, должен устанавливать напряжение на неинвертирующем входе от -0,118В до 1,191В.
Тогда, сопротивление резистора R11, учитывая входной ток ОУ:
,
выбираем стандартный резистор сопротивлением 20кОм.
,
выбираем стандартный резистор сопротивлением 200кОм.
Питание системы управления осуществляется от вспомогательного источника, вырабатывающего двухполярное напряжение В. Источник питается от сети напряжением 115В, 400 Гц и состоит из трансформатора TV2 типа ТА1-115-400 и диодного мостика, собранного на диодах 2Д106А.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем