Датчик шума
Таким образом, можно утверждать, что элементы субблока для поверхностного монтажа выбраны правильно и соответствуют всем характеристикам, необходимым для правильной работы блока.
Расчет конструкции РЭА при действии вибрации
Вибрация – длительные знакопеременные процессы. В результате воздействия механических нагрузок могут иметь место различные повреждения РЭС: нарушение гермет
ичности, полное разрушение корпуса РЭА или отдельных его частей вследствие механического резонанса или усталости, обрыв монтажных связей, отслоение печатных проводников, отрыв навесных ЭРЭ, поломка керамических и ситалловых подложек, временный или окончательный выход из строя разъемных и неразъемных соединений, изменение паразитных связей и т.д.
Различают два понятия: вибрационная устойчивость и вибрационная прочность. Вибрационная устойчивость – свойство объекта при заданной вибрации выполнять заданные функции и сохранять значения своих параметров в пределах нормы. Вибрационная прочность – прочность при заданной вибрации и после ее прекращения. Целью расчета конструкции РЭА при действии вибрации является определение действующих на элементы изделия максимальных перегрузок и перемещений.
Периодическая вибрация характеризуется спектром (диапазон частот), виброускорением, перегрузкой. Коэффициент перегрузки n, амплитуда виброускорения а, и виброперемещения S, связаны между собой соотношениями:
Исходные данные:
Размеры ПП: а×b×h = 165×120×1,5 мм;
Материал ПП – стеклотекстолит (γ = 2,05×104 Н/м3);
Для стеклотекстолита:
Е = 3,02×1010 Па,
μ = 0,22,
ρ = 2050 кг/м3.
Диапазон частот вибрации 10 – 40 Гц.
Решение:
Масса ПП mn =а×b×h×ρ=0,165×0,120×0,0015×2050 = 61 г.,
Масса элементов mэ = Σ ni mi =(резисторы) + (микросхемы) + +(конденсаторы)= (78*4,5) + (13×1,5) + (62×2,8) = 174 г.
тогда
2. Так как ПП шарнирно оперта по трем сторонам, то
3. Находим цилиндрическую жесткость ПП:
4. Определяем собственную частоту колебаний ПП:
fc = 107 Гц
5. Находим амплитуду колебаний (прогиб) ПП на частоте fc из диапазона частот воздействующих на плату, максимально близкой к fс при заданном коэффициенте перегрузки n:
6. Определяем коэффициент динамичности в диапазоне частот вибрации, близких к fc:
где e – показатель затухания колебаний (для стеклотекстолита при напряжениях, близких к допустимым, принимаем e=0,06).
7. Динамический прогиб ПП при ее возбуждении с частотой f:
S = KД × A = 1,16 × 0,2183 = 0,002533 мм = 0,000002533 м
8. Эквивалентная этому прогибу равномерно распределенная нагрузка при
С1 = 0,00406 + 0,018 lg (a/b) = 0,00406 + 0,018 lg (100/65) = 0,0074
9. Максимальный распределенный изгибающий момент при
С2=0,0479 + 0,18 lg (a/b)= 0,0479 + 0,18 Ig (100/65) = 0,082
10. Находим максимальное динамическое значение изгиба:
σmax = 0,19МПа
11. Проверяем условие виброустойчивости:
=0,19
где s-1 – предел выносливости материала ПП, для стеклотекстолита s-1=105 МПа.
ns=1,8¸2 – допустимый запас прочности для стеклотекстолита.
Таким образом, условие виброустойчивости выполнено.
Расчёт конструкции РЭС на действие удара
Явление удара в конструкциях РЭС возникает в случаях, когда объект, на котором установлена машина, претерпевает быстрое изменение ускорения.
Удар характеризуется ускорением, длительностью и числом ударных импульсов. Различают удары одиночные и многократные.
Также ударные воздействия характеризуются формой и параметрами ударного импульса. Ударные импульсы могут быть полусинусоидальной, четверть синусоидальной, прямоугольной, треугольной и трапециевидной формы. Максимальное воздействие на механическую систему оказывает импульс прямоугольной формы. Параметрами ударного импульса являются:
– длительность ударного импульса (τ)
– амплитуда ускорения ударного импульса (НY).
Целью расчета является определение ударопрочности конструкции при воздействии удара.
Ударный импульс действует только в течение времени τи. Величина ω = π/τи получила название условной частоты импульса.
Исходными данными для расчета конструкции
на ударопрочность являются:
– параметры ударного импульса (τ) и (НY).
– параметры конструкции
– характеристики материалов конструкции или собственная частота колебаний механической системы.
Исходные данные:
Форма ударного импульса – прямоугольная: τи = 15 мс;
Размеры платы a×b×h = 165×120×1,5 (мм);
fс=107Гц (см. расчет на действие вибрации);
Масса ЭРЭ mЭ = 544 г.;
aYдоп = 15g;
Параметры материала ячейки:
Е= 3,02×1010 Па – модуль упругости;
μ = 0,22 – коэффициент Пуассона;
ρ = 2050 кг/м – плотность;
γ = 2,05×104 н/м – удельный вес.
Ударное ускорение НY = 10g = 100 м/с2.
Расчет:
Условная частота ударного импульса
ω = π/τи = 628 (рад/с)
Определяем коэффициент передачи при ударе.
Для прямоугольного импульса.
KY = 2sin (π/2n) = 1,498
где n – коэффициент расстройки:
Находим ударное ускорение
аY = НYКY = 149,8 (м/с2)
Максимальное относительное перемещение будет:
Проверяем условия ударопрочности ПП с ЭРЭ
Smax < 0,003×b
где b – размер стороны ПП, параллельно которой установлены ЭРЭ.
аY< aYдоп
аY = 149,8< 15g = 150
Smax = 0,003 < 0,003×127 = 0,38
Таким образом, условия ударопрочности выполняются.
Расчёт надёжности
Надежность – свойство электронной аппаратуры выполнять заданные функции, сохраняя во времени значения эксплуатационных показателей в заданных пределах, при соблюдении режимов эксплуатации, правил технического обслуживания, хранения и транспортирования
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем