Виды исследовательских проектов
Таблица 3
Во второй период времени t2 | ||||||
Купили А |
Купили В |
Купили С |
Купили Д |
Всего | ||
idth=88 rowspan=5 >
В первый период времени t1 |
Купили А |
175 |
25 |
0 |
0 |
200 |
Купили В |
0 |
225 |
50 |
25 |
300 | |
Купили С |
0 |
0 |
280 |
70 |
350 | |
Купили Д |
75 |
20 |
0 |
55 |
150 | |
Всего |
250 |
270 |
330 |
150 |
1000 |
То есть по ней видно, что 200 семей или 20% приобретали «марку А» в период t1, тогда как 250 семей или 25% делали то же самое в период t2. Но табл. 3 также показывает, что товар А добился увеличения рыночной доли не за счет марок В и С, как можно было первоначально предполагать, а благодаря привлечению нескольких семей, которые прежде покупали стиральные порошки прочих марок. 75 семей переключились с приобретения «марки Д» в период t1 на покупку товара А в период t2. Кроме того из таблицы видно, что за период между изменениями «марка А» потеряла некоторых своих приверженцев, 25 семей переключились с приобретения товара А в период t1 на покупку товара В в период t2.
Табл. 3 позволяет также рассчитать приверженность марке. Например, по товару А: 175 из 200 семей (87,5%) тех, кто покупал «марку А» в период t1, остались ему «верны» (приобрели снова) в период t2. поделив содержимое каждой ячейки на суммы по строкам или итоги предыдущего периода, можно оценить эти приверженности маркам, а также более рельефно увидеть основные изменения, которые произошли на рынке. Табл. 4 показывает результаты расчетов приверженности маркам.
Таблица 4
Во второй период времени t2 | ||||||
Купили А |
Купили В |
Купили С |
Купили Д |
Всего | ||
В первый период времени t1 |
Купили А |
0,875 |
0,175 |
0,00 |
0,000 |
1,000 |
Купили В |
0,000 |
0,750 |
0,167 |
0,083 |
1,000 | |
Купили С |
0,000 |
0,000 |
0,800 |
0,200 |
1,000 | |
Купили Д |
0,500 |
0,133 |
0,000 |
0,367 |
1,000 |
По результатам таблицы видно, что из трех главных марок «марка А» продемонстрировала наибольшую покупательскую приверженность, а «марка В» - наименьшую. Это важно знать, т.к. такая информация показывает, понравилась ли семьям та или иная марка после того, как они ее проверили. Вопрос о том, можно ли сделать вывод, что решение тех, кто переключился с прочих марок на «марку А», было стимулировано изменением формы упаковки, остается открытым. Здесь же следует подчеркнуть, что анализ матрицы лояльности марок может быть выполнен, только когда выполняются повторяемые во времени измерения одних и тех же переменных для одних и тех же объектов. Он не применим ни к данным всеобъемлющих списков, измеряемые переменные которых постоянно меняются, ни в исследованиях поперечных сечений, даже если во внимание принимается выборки для сечений, следующих одно за другим.
Преимущества анализа временных рядов состоит в том, что:
1). При исследовании можно определять эффект какого-то изменения на конкретную маркетинговую переменную. Если бы для изучения изменения какой-то конкретной переменной использовались две разные группы, осталось бы неясным, имела место вариация данных вследствие изменения этой маркетинговой переменной или они возникли из-за различий этих двух групп.
2). Списки представляют наилучший формат для сбора классификационной информации, такой как доходы, возраст, уровень образования и род занятий. А такая информация дает возможность проведения более тонкого анализа результатов исследований.
3). Списочные данные более точны, чем данные поперечных сечений, так как им свойственна тенденция быть более свободными от ошибок, ассоциируемых с регистрацией сведений о прошлом поведении, которые связаны со свойственной людям забывчивостью, иногда объясняемой давностью и другими причинами.
Главным недостатком списков является то, что они могут быть нерепрезентативными. Соглашение об участии влечет за респондентами определенные обязательства и многие отказываются принимать их. Некоторые индивиды оказываются потерянными для списка в связи с переездом или смертью. В зависимости от типа необходимого сотрудничества доля отказавшихся и «умерших» может превышать 50%.
Однако не для каждого исследования утрата представительности может стать проблемой. Это зависит от цели исследования и конкретных переменных, представляющих интерес.
Анализ поперечного сечения.
Несмотря на преимущества анализа временных рядов, в реальной практике наиболее известными и самыми важными описательными проектами являются проекты исследований поперечных сечений.
Исследование поперечного сечения отличается двумя особенностями. Во-первых, это исследование обеспечивает подобие моментального снимка представляющих интерес переменных в какой-то одной точке времени, в отличие от продольного исследования, дающего последовательность картинок, которые когда соединяются вместе, дают как бы кинокартину меняющейся во времени ситуации. Во-вторых, в исследовании поперечного сечения выборка элементов обычно определяется таким образом, чтобы быть представительной. Поэтому основной упор делается на отборе членов выборки, который осуществляется по определенному вероятностному плану. Этот прием часто называют выборочным обследованием. Вероятностный характер формирования выборки предполагает возникновение ошибок, связанных с оценками, которые получаются на базе выборки, но используются для описания всей совокупности. Большинство выборочных обследований сопряжено с привлечением достаточного объема наблюдений, допускающих перекрестную классификацию переменных. Цель перекрестно-классификационного анализа состоит в установлении взаимных зависимостей между классификациями исследуемых объектов, осуществляемыми по различным признакам. Метод перекрестно-классификационного анализа будет рассмотрен в вопросе, связанный с табулированием.