Классификация и эволюция звёзд
2.10 Химический состав
«По химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом
углерода, 0.3 атома железа.
Существуют звезды, имеющие повышенное содержание того или иного элемента. Так, известны звезды с по повышенным содержанием кремния (кремниевые звезды), звезды, в которых много железа (железные звезды), марганца (марганцевые), углерода (углеродные) и т. п. Звезды с аномальным составом элементов довольно разнообразны. В молодых звездах типа красных гигантов обнаружено повышенное содержание тяжелых элементов. В одной из них найдено повышенное содержание молибдена, в 26 раз превышающее его содержание в Солнце. Вообще говоря, содержание элементов, атомы которых имеют массу, большую массы атома гелия, постепенно уменьшается по мере старения звезды. Вместе с тем, химический состав звезды зависит и от местонахождения звезды в галактике. В старых звездах сферической части галактики содержится немного атомов тяжелых элементов, а в той части, которая образует своеобразные периферические спиральные « рукава » галактики, и в ее плоской части имеются звезды, относительно богатые тяжелыми элементами. Именно в этих частях и возникают новые звезды. Поэтому можно связать наличие тяжелых элементов с особенностями химической эволюции, характеризующей жизнь звезды.
Очень интересны углеродные звезды. Это звезды относительно холодные - гиганты и сверхгиганты. Их поверхностные температуры лежат обычно в пределах 2500 - 6000С. При температурах выше 3500С при равных количествах кислорода и углерода в атмосфере большая часть этих элементов существует в форме оксида углерода CO. Некоторые типы звезд характеризуются повышенным содержанием металлов, расположенных в одном столбце периодической системы с цирконием; в этих звездах имеется неустойчивый элемент технеций 4399Тс. Ядра технеция могли образоваться из 98Мо в результате захвата нейтрона с выбрасыванием электрона из ядра молибдена или при фотопроцессе из 97Мо. Во всяком случае наличие нестабильного ядра - убедительное доказательство развития ядерных реакций в звездах» [2].
2.11 Магнетизм
Наконец, стоит сказать несколько слов о магнетизме звезд. Тем же спектроскопическим методом было обнаружено наличие мощных магнитных полей в атмосферах некоторых звезд. Напряженность этих полей в отдельных случаях доходит до 10 тыс. Э (эрстед), т. е. в 20 тыс. раз больше, чем магнитное поле Земли. Заметим, что в солнечных пятнах напряженность магнитных полей доходит до 3-4 тыс. Э. Вообще магнитные явления, как выяснилось в последние годы, играют значительную роль в физических процессах, происходящих в солнечной атмосфере. Имеются все основания полагать, что то же самое справедливо и для звездных атмосфер.
3. Зависимости между звёздными параметрами
«Прежде чем приступать к рассмотрению эволюции звезд, мы должны ознакомиться с одним из самых важных графиков, существующих в астрономии.
В начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Ресселл эмпирически установили (независимо), что существует зависимость между светимостью звезд и их спектральным классом. Если нанести положения большого количества звезд на диаграмму , у которой по оси абсцисс отложены спектральные классы звезд, а по оси ординат - светимости, оказывается, что звезды отнюдь не располагаются беспорядочно, а образуют определенные группы. Положение звезды на диаграмме зависит от ее массы, возраста и химического состава (см. приложение 3). Со временем выявился глубокий физический смысл расположения звезд на диаграмме, и стали понятными передвижения звезд по диаграмме в зависимости от возраста (эволюционные треки). Диаграмма Герцшпрунга-Ресселла (Г. — Р. д.) для звезд является важным инструментом сравнения теоретических моделей звезд с наблюдениями. Диаграмма ГР обычно приводится в следующих координатах:
1. Светимость - эффективная температура 2. Абсолютная звездная величина - показатель цвета 3. Абсолютная звездная величина - спектральный класс
Большинство известных звёзд располагается на главной последовательности (см.приложение 4), простирающейся по диагонали Г. — Р. д. от горячих голубых звёзд (например, Спика, спектральный класс В) со светимостью в 1000 раз больше солнечной через белые звёзды (Сириус, А), желтовато-белые (Процион, F), жёлтые (Солнце, G), оранжевые (t Кита, К) к красным карликам (звезда Крюгер 60, М), которые слабее Солнца в 1000 раз. Звёзды-гиганты — жёлтые, оранжевые и красные звёзды больших размеров (Капелла, Арктур, Альдебаран) — находятся справа от главной последовательности. Сверхгиганты — сравнительно немногочисленная группа звёзд всех спектральных классов очень большой светимости (в 104—105 раз больше солнечной) — заполняют самую верхнюю область Г. — Р. д. (Ригель, В и Бетельгейзе, М). Субгигантами называют красноватые звёзды, размеры которых больше звёзд главной последовательности той же светимости (компоненты затменно-двойных звёзд). Субкарлики — это звёзды-карлики главной последовательности, отличающиеся пониженным содержанием металлов, характерным для звёзд сферической составляющей Галактики, и располагающиеся вследствие этого на Г. — Р. д. в пределах главной последовательности. (Первоначально предполагалось, что субкарлики образуют самостоятельную последовательность на 1—1,5 звёздной величины ниже главной последовательности.) Группа белых карликов — очень плотных маленьких звёзд, находится на 10 звёздных величин ниже главной последовательности. Для каждой группы звёзд свойственны определённые зависимости между массой, светимостью и радиусом и свои особенности строения. Количество звёзд в разных областях Г. — Р. д. различно; звёзд большой светимости значительно меньше, чем слабых. Вне описанных групп звёзд практически нет. На рисунках представлены Г. — Р. д. для звёзд окрестности Солнца и звёзд рассеянных скоплений, принадлежащих плоской составляющей Галактики (см. приложение 4, рис.1), и звёзд шаровых скоплений, относящихся к сферической составляющей Галактики (см. приложение 4, рис.2). Различие между диаграммами (отсутствие сверхгигантов в верхней части главной последовательности у звёзд сферической составляющей) объясняется разницей в возрасте (т. е. в наблюдаемых стадиях эволюции) и в начальном химическом составе обеих составляющих. (Звёзды сферической составляющей в основном более старые и содержат меньше металлов.)» [3].
4. Эволюция звёзд
Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой ; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе.