Особенности почвы как природного образования. Понятие о гумосфере как аккумуляторе энергии
На данном этапе становления биосферы растения во многих отношениях были сходны с водными предками, и длительное время сохраняли потребность в постоянном обильном увлажнении среды своего обитания. Роль фактора, стабилизировавшего водообеспечение, выполняло органическое вещество, которое по своей природе обладает большой способностью поглощать и удерживать воду. Эта особенность органического веще
ства послужила предпосылкой использования создаваемых самими же растениями запасов мертвых остатков в качестве субстрата – почвы.
Атмоземный этап развития биосферы продолжался около 200 млн. лет. За это время организмы адаптировались к жизни в условиях воздушного окружения и были подготовлены к переселению на литосферную оболочку суши. Однако растительность атмоземного периода имела слаборазвитую корневую систему, приспособленную к функционированию в условиях влажных органогенных почв. Дальнейшее совершенствование растений, прежде всего корневых систем, происходило в течении литоземного этапа. Появилась новая форма почвообразования - автоморфное. Путь к нему шел постепенно, через ряд гидроморфных и полугидроморфных почв, с постепенным уменьшением содержания перегноя, увеличением количества гуминовых кислот. По всей видимости, наиболее поздно сформировавшимися были пустынные биомы, для которых характерен наименее развитый почвенный покров.
Из выше сказанного следует вывод о том, что на протяжении всей истории биосферы между живой и неживой природой, живыми организмами и продуктами метаболизма экосистем существовала тесная связь, взаимозависимость. Для процесса почвообразования, также как и для жизни в целом, характерно рассеяние энтропии, то есть её уменьшение. В то же время происходит повышение упорядоченности, количество информации в почвенных системах в ходе развития растёт.
Наибольшую роль в уменьшение энтропии почвенных систем вносят гумусовые вещества – аккумулятор энергии Солнца, а также микроорганизмы, которые даже аналитически невозможно отделить в процессе анализа органического вещества.
Наиболее энергоемки и термодинамически устойчивы молекулы гуминовых кислот. Они состоят из ароматических конденсированных ядер и многофункциональных периферических алифатических цепей с общей системой сопряженных связей. Подобная система является довольно устойчивой, ядро состоит из 5-6-ти бензольных колец (по И. Д. Комисарову). Алифатическая периферия – переменный компонент, которые может быть, а может и не быть в составе молекулы. В процессе почвообразования к ранее сформированным ароматическим матрицам могут присоединяться цепи различной длины. В то же время при недостатке органического материала, микроорганизмы способны использовать эти цепи на нужды метаболизма.
Гуминовые кислоты, накапливая солнечную энергию, сами уподобляются в своей геометрии Солнцу. Ароматическое ядро – звезда, алифатические цепи – расходящиеся лучи.
Одним из наиболее специфических почвенных свойств стоит признать наличие специфических органических веществ, они содержаться в любой почве и большинстве парапочв. Эти вещества настолько важны в биосфере, что В. А. Ковда, продолжая учение В. И. Вернадского о биосфере, предложил считать гумусовый слой планеты особой энергетической оболочкой – гумосферой. Растительные остатки, поступая в почву, несут около 17-21 кДж энергии на 1 г сухого вещества. По данным С. А. Алиева, 1 г гуминовой кислоты содержит от 18 до 22 кДж, 1 г фульвокислоты около 19 кДж, 1 г липидов – 35,5 кДж. Почвы, содержащие среднее количество органического вещества 4-6% и имеющие средние запасы гумуса (200-400 т/га), накапливают на 1 га столько энергии, сколько дают 20-30 т антрацита.
Энергия гумуса, это энергия порядка. Она снижает энтропию системы. Расходуется на оструктуривание почв, тем самым, создавая благоприятные условия для произрастающих растений и деятельности звена деструкторов экосистем. Почвенный агрегат является почвенной клеткой, в которой протекают многие элементарные процессы, а в гумусовых горизонтах создаются оптимальные для данных условий условиях водно-воздушного и пищевого режимов. Также оструктуривание почв гумусовыми веществами, имеющими в своих молекулах гидрофобные цепи, способствует противоэрозионной стойкости, в тоже время гидрофильные части молекул вносят вклад в капиллярность, отчего влага быстро впитывается.
Часть энергии гумуса расходуется на преобразования минеральной массы, обеспечение питания растений, беспозвоночных животных и микроорганизмов.
Общие запасы углерода биосферы оцениваются величиной 2-3∙1012 т. Большая часть органического углерода приходится на сушу и в первую очередь на почвенный гумус. В результате фотосинтеза ежегодно связывается около 50∙109 т углерода из атмосферы, а при отмирании на поверхность почвы в виде опада поступает около 40∙109. Часть опада минерализуется, но значительная часть по разным источникам от 0,6 до 25∙109 т углерода в год превращается в гуминовые вещества.
Если определять теплотворность растения, то наименьшее количество энергии аккумулируется в корнях, наибольшее в листьях. Овингтон и Эйтками, анализируя результаты всех опытов, пришли к выводу, что только 1-2,7 % приходящей солнечной энергии используется экосистемой. В дальнейшем на каждый последующий трофический уровень также передаётся лишь 1% энергии, остальная энергия закрепляется, либо рассеивается.
Происходит ли в почве ежегодное увеличение содержания гумуса, т. е. запасенной энергии? С. Я. Трофимов (2002) выделяет три типа биологического круговорота:
1) аккумулятивный;
2) регрессивный;
3) квазистационарный.
В первом случае экосистема накапливает органическое вещество и энергию вместе в ним, во втором случае органическое вещество срабатывается, а в третьем количество разлагающейся органики = количеству поступающей в почву. Эти типы задаются отношениями гетеротрофного блока экосистемы с автотрофным. Для экосистем предпочтителен третий тип, так как первые два типа не могут существовать продолжительное время.
Если принять во внимание, что глобальные цифры свидетельствуют о выводе углерода из атмосферы, то верно есть на планете несбалансированные экосистемы. Существование же их говорит о том, что планетарные условия меняются, вызывая адекватные реакции биосферы.
Интересные данные о запасах энергии в экосистемах приводятся В. Р. Волобуевым (1974).
Таблица 1 – Энергия, связанная с основными компонентами характерных почвенно-растительных систем (в верхнем 3-х метровом слое почвогрунтов сечением 1 см2) и растительном веществе
Зональный тип биогеоценоза и почва |
Энергия компонентов в приземном слое и почве, кал | |||
Затраченная на минеральные преобразования |
Аккумулиро-ванная в гумусе |
Аккумулиро-ванная в раститель-ном сообществе |
Всего | |
Тундровый, глеево-тундровая |
1230 |
6000 |
450 |
7680 |
Таежный, подзолистая |
2460 |
6800 |
14250 |
23510 |
Влажнотропический, красноземная |
12350 |
9200 |
71250 |
9280 |
Степной, чернозем |
5040 |
20000 |
2250 |
27290 |
Сухостепной, каштановая |
2100 |
8000 |
1500 |
11000 |
Полупустынный, серозем |
3920 |
4000 |
750 |
2670 |
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики