Методы и условия культивирования изолированных клеток и тканей растений
Экспериментально было показано, что клетки после хранения в жидком азоте не теряют способности к делению, регенерации растений, не уменьшается продуктивность синтеза вторичных метаболитов (клетки продуценты) и т.д. Так, Институтом физиологии растений РАН совместно с НПО по картофелеводству разработаны методы криосохранения меристем четырех сортов картофеля и показана возможность из 20% хранящих
ся меристем регенерировать целые растения, которые при высадке в поле не отличались по всем признакам, включая темпы роста и продуктивность, от обычных пробирочных растений (С. Манжулин и др., 1982). Более подробно о технике криосохранения можно узнать из обзорных работ А.С. Попова.
Таким образом, технология, связанная с криосохранением растительных объектов, развивается и постоянно совершенствуется. Несомненно, эта технология имеет свое будущее, так как уже сегодня криобанки могут значительно облегчить работу селекционеров, предоставив им возможность широко использовать пул генов сортов, в том числе старой селекции и диких видов, а также исчезающих видов растений.
2. Клеточная селекция растений
Сомаклональная вариабельность. Метод культуры изолированных клеток, тканей и органов растений in vitro, широко используемый для решения многих фундаментальных вопросов клеточной биологии, физиологии и генетики растений, в настоящее время находит все большее применение и при создании новых биотехнологий. Начиная с первых работ по культивированию растительных клеток, тканей и органов особый интерес у исследователей вызвал вопрос о том, какие клеточные изменения могут происходить в изолированных клетках, растущих на искусственных питательных средах, и причины, их вызывающие. С разработкой техники получения растений-регенерантов из каллусной ткани появилась возможность получать новые формы растений, отличающиеся как по фенотипическим, так и по генетическим признакам от исходных растений. Такое разнообразие среди клеточных линий и растений-регенерантов получило название «сомаклоны», хотя еще в 70–80-е годы нашего столетия было принято называть растения, регенерировавшие из каллусной ткани, «калликлонами», а из протопластов – «протоклонами».
Генетическая природа и механизм возникновения сомаклональной изменчивости пока мало изучены. Однако четко можно выделить зависимость возникновения сомаклональных вариантов, прежде всего, от генетической гетерогенности соматических клеток исходного экспланта, генетической и эпигенетической изменчивости, индуцируемой условиями культивирования in vitro, а также от генотипа и исходного экспланта.
Дифференцированные клетки в нормальном растении могут иметь разную степень плоидности, но для отдельных видов характерно наличие только диплоидных клеток. Однако в процессе онтогенеза могут возникать клетки с разной плоидностью. Например, экспериментально доказано, что в меристемных тканях, наряду с фактором видового постоянства числа хромосом, почти у 80% покрытосеменных растений в процессе дифференцировки в соматических клетках может происходить эндоредупликация хромосом и формирование тканей различного уровня плоидности. Для вегетативно размножаемых и апомиктичных растений характерно образование с высокой частотой анеуплоидных клеток. Усиление хромосомных перестроек, приводящих к появлению химерности и миксоплоидии у растений, наблюдается при изменении условий произрастания, особенно при их резком ухудшении: засоление почв, повышенные или пониженные температуры, применение гербицидов или пестицидов, минеральных удобрений в повышенных дозах и др. Эти и другие часто встречающиеся в практике факторы могут приводить к физиологическим нарушениям, связанным, в первую очередь, с появлением аномальных митозов и формированием клеток с числом хромосом, отличающимся от такового в материнской ткани.
Цитологические исследования показали, что вариабельность, индуцируемая условиями культивирования in vitro, связана с генетическими изменениями. Прежде всего одним из основных источников появления фенотипических вариантов являются различные кариологические изменения и перестройки. Однако выявить, какие из них будут иметь фенотипический эффект и наследоваться как стабильная мутация генов, часто сложно. Как грубые, так и тонкие хромосомные изменения – мелкие деления, дупликации, транслокации, инверсии – могут вызвать существенные фенотипические изменения как в растениях-регенерантах, так и в последующем потомстве. Хромосомные изменения часто наблюдаются при мейозе. Анализ мейоза клетки в регенерантах показал такие интенсивные перестройки хромосом, как транслокация, инверсия, субхроматидный обмен, частичная утрата хромосом. Это является доказательством того, что большая часть фенотипических изменений обусловлена генетическими механизмами.
Сомаклональную изменчивость можно проследить на молекулярном уровне, оценивая тонкие перестройки ядерной ДНК.
Кроме сомаклональной вариабельности, связанной с наследуемыми перестройками генома, отмечены фенотипические изменения («эпигенетические»), которые могут стабильно передаваться дочерним клеткам, но не проявляться в растениях-регенерантах или их половом потомстве (Приложение 1).
Высокая степень разнообразия сомаклонов зависит от исходного генотипа, природы и стадии развития экспланта. Например, у различных злаков степень изменчивости среди сомаклонов может значительно различаться: у пшеницы (2n=6х=42) из 192 исследованных растений-регенерантов 29% были анеуплоидами, у гексаплоидного овса (2n=6х=42) выявлены цитоге-нетические изменения с такой же частотой, а для кукурузы частота возникновения анеуплоидных растений не превышала 2–3%. Образование полиплоидных и анеуплоидных растений может наблюдаться и у других видов, например, на картофеле. Причем частота появления новых вариантов у диких видов значительно ниже, чем у дигаплоидных линий культивируемого картофеля.
Тип исходного экспланта также влияет на появление сомаклональных вариантов, отличающихся количественными и качественными признаками. Для картофеля, например, аномальные растения получены в 12% случаев при использовании в качестве первичного экспланта мезофильных тканей листа, а в случае использования лепестков или оси соцветий частота формирования растений с фенотипическими отклонениями от нормы составила 50%.
Условия культивирования и, в частности, нарушение гормонального баланса питательной среды – одна из причин возникновения генетического разнообразия культивируемых клеток вследствие нарушения клеточного цикла, в частности митоза. От соотношения фитогормонов, входящих в состав питательных сред, во многом зависит цитогенетическая структура клеточных популяций. Однако морфологическая и цитогенетическая разнокачественность клеточных популяций может возникнуть и вследствие влияния отдельных компонентов питательной среды: некоторых минеральных солей, сахарозы или другого источника углеродного питания, витаминов, растительных экстрактов, а также от режима выращивания. Длительное культивирование клеток in vitro также способствует повышению генетического разнообразия сомаклонов. Причем для некоторых видов показано, что, несмотря на присутствие в культуре клеток разной плоидности, регенерировавшие растения были преимущественно диплоидными. Это явление было объяснено тем, что в процессе культивгирования отбирались растения-регенеранты с более или менее нормальной морфологией, которые регенерировали, как правило, в первую очередь.
Другие рефераты на тему «Биология и естествознание»:
Поиск рефератов
Последние рефераты раздела
- Влияние экологических факторов на разнообразие моллюсков разнотипных искусственных и естественных водоемов
- Влияние экологии водоемов на биологическое разнообразие фауны
- Влияние фтора и фторосодержащих соединений на здоровье населения
- Влияние факторов внешней среды на микроорганизмы
- Влияние физической нагрузки на уровень адренокортикотропного гормона, адреналина, кортизола, кортикостерона в сыворотке крови спортсменов
- Временные аспекты морфогенетических процессов. Эволюция путем гетерохронии
- Вопросы биоэтики