Доказательство и его разновидности

Итак, ход мысли в косвенном доказательстве определяется тем, что вместо обоснования справедливости тезиса стремятся показать несостоятельность его отрицания. В зависимости от того, как решается последняя задача, можно выделить несколько разновидностей косвенного доказательства.

2 СЛЕДСТВИЯ, ПРОТИВОРЕЧАЩИЕ ФАКТАМ

Чаще всего ложность антитезиса удается установить простым сопоставле

нием вытекающих из него следствий с фактами. Так обстояло, в частности, дело в примере с гриппом.

Друг изобретателя паровой машины Д. Уатта шотландский ученый Д. Блэк ввел понятие о скрытой теплоте плавления и испарения, важное для понимания работы такой машины. Блэк, наблюдая обычное явление - таяние снега в конце зимы, рассуждал так: если бы снег, скопившийся за зиму, таял сразу, как только температура воздуха стала выше нуля, то неизбежны были бы опустошительные наводнения, а раз этого не происходит, значит, на таяние снега должно быть затрачено определенное количество теплоты. Ее Блэк и назвал скрытой.

Это - косвенное доказательство. Следствие антитезиса, а значит, и он сам, опровергается ссылкой на очевидное обстоятельство: в конце зимы наводнений обычно нет, снег тает постепенно. [5, c. 103]

Внутренне противоречивые следствия. По логическому закону непротиворечия одно из двух противоречащих друг другу утверждений является ложным. Поэтому, если в числе следствий какого-либо положения встретились и утверждение и отрицание одного и того же, можно сразу же заключить, что это положение ложно.

Например, положение «Квадрат - это окружность» ложно, поскольку из него выводится как то, что квадрат имеет углы, так и то, что у него нет углов.

Ложным будет также положение, из которого выводится внутренне противоречивое высказывание или высказывание о тождестве утверждения и отрицания.

Один из приемов косвенного доказательства - выведение из антитезиса логического противоречия. Если антитезис содержит противоречие, он явно ошибочен. Тогда его отрицание - тезис доказательства - верно. [5, c. 67-68]

Хорошим примером такого рассуждения служит известное доказательство Евклида, что ряд простых чисел бесконечен.

Простые - это натуральные числа больше единицы, делящиеся только на себя и на единицу. Простые числа - это как бы «первичные элементы», на которые все целые числа (больше 1) могут быть разложены. Естественно предположить, что ряд простых чисел:

2, 3, 5, 7, 11,13, . - бесконечен. Для доказательства данного тезиса допустим, что это не так, и посмотрим, к чему ведет такое допущение. Если ряд простых чисел конечен, существует последнее простое число ряда - А. Образуем далее другое число: В = (2 • 3 • 5 • . • А) + 1. Число В больше А, поэтому В не может быть простым числом. Значит, В должно делиться на простое число. Но если В разделить на любое из чисел 2, 3, 5, А, то в остатке получится 1. Следовательно, В не делится ни на одно из указанных простых чисел и является, таким образом, простым. В итоге, исходя из предположения, что существует последнее простое число, мы пришли к противоречию: существует число одновременно и простое, и не являющееся простым. Это означает, что сделанное предположение ложно и правильно противоположное утверждение: ряд простых чисел бесконечен.

В этом косвенном доказательстве из антитезиса выводится логическое противоречие, что прямо говорит о ложности антитезиса и соответственно об истинности тезиса. Такого рода доказательства широко используются в математике.

Если имеется в виду только та часть подобных доказательств, в которой показывается ошибочность какого-либо предположения, они именуются по традиции приведением к абсурду. Ошибочность предположения вскрывается тем, что из него выводится откровенная нелепость. [3, c. 54-55]

Имеется еще одна разновидность косвенного доказательства, когда прямо не приходится искать ложные следствия. Дело в том, что для доказательства утверждения достаточно показать, что оно логически вытекает из своего собственного отрицания.

Этот прием опирается на закон Клавия, говорящий, что если из ложности утверждения вытекает его истинность, то утверждение истинно.

К примеру, если из допущения, что дважды два равно пяти, выведено, что это не так, тем самым доказано, что дважды два не равняется пяти.

По такой схеме рассуждал еще Евклид в своей «Геометрии». Эту же схему использовал однажды древнегреческий философ Демокрит в споре с другим древнегреческим философом, софистом Протагором. Протагор утверждал, что истинно все то, что кому-либо приходит в голову. На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания «Не все высказывания истинны». И значит, это отрицание, а не положение Протагора на самом деле истинно.

3 РАЗДЕЛИТЕЛЬНОЕ ДОКАЗАТЕЛЬСТВО

Во всех рассмотренных косвенных доказательствах выдвигаются две альтернативы: тезис и антитезис. Затем показывается ложность последнего, в итоге остается только тезис.

Можно не ограничивать число принимаемых во внимание возможностей только двумя. Это приведет к так называемому разделительному косвенному доказательству, или доказательству через исключение. Оно применяется в тех случаях, когда известно, что доказываемый тезис входит в число альтернатив, полностью исчерпывающих все возможные альтернативы данной области.

Например, нужно доказать, что одна величина равна другой. Ясно, что возможны только три варианта: или две величины равны, или первая больше второй, или, наконец, вторая больше первой. Если удалось показать, что ни одна из величин не превосходит другую, два варианта будут отброшены и останется только третий: величины равны.

Доказательство идет по простой схеме: одна за другой исключаются все возможности, кроме одной, которая и является доказываемым тезисом. В стандартных косвенных доказательствах альтернативы - тезис и антитезис - исключают друг друга в силу законов логики. В разделительном доказательстве взаимная несовместимость возможностей и то, что ими исчерпываются все мыслимые альтернативы, определяются не логическими, а фактическими обстоятельствами. Отсюда обычная ошибка разделительных доказательств: рассматриваются не все возможности. [2, c. 87-90]

С помощью разделительного доказательства можно попытаться, например, показать, что в Солнечной системе жизнь есть только на Земле. В качестве возможных альтернатив выдвинем утверждения, что жизнь есть на Меркурии, Венере, Земле и т.д., перечисляя все планеты Солнечной системы. Опровергая затем все альтернативы, кроме одной - говорящей о наличии жизни на Земле, получим доказательство исходного утверждения.

Нужно заметить, что в ходе доказательства рассматриваются и опровергаются допущения о существовании жизни на других планетах. Вопрос о том, если ли жизнь на Земле, вообще не поднимается. Ответ получается косвенным образом: путем показа того, что ни на одной другой планете нет жизни. Это доказательство оказалось бы, конечно, несостоятельным, если бы, допустим, выяснилось, что, хотя ни на одной планете, кроме Земли, жизни нет, живые существа имеются на одной из комет или на одной из так называемых малых планет, тоже входящих в состав Солнечной системы.

Страница:  1  2  3 


Другие рефераты на тему «Психология»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы