Свойства нефти и газа в залежах и месторождениях, их закономерности и изменения

В настоящее время можно считать доказанным, что процесс восстановления сульфатов за счет окисления нефти и образования сероводорода при разработке нефтяных месторождений происходит биогенным путем в результате жизнедеятельности сульфатвосстанавливающих бактерий (Desulfovibrio desulfuricans).

Специальными лабораторными исследованиями было установлено, что жизнедеятельность сульфатвосстанавли

вающих бактерии подавляется при температуре выше 80—90 °С и минерализации воды более 100—150 г/л. Про­мысловые наблюдения подтверждают эти данные.

Сероводород отмечен в тех залежах, в которые в процессе разработки закачивают поверхностные пресные и морские воды или подземные воды неглубоких горизонтов, и неизвестен при закачке высокоминерализованных пластовых или сточных вод (рассолов). Во всех случаях сероводородного заражения нефтяных пластов в нефти и попутной воде были обнаружены сульфатвосстанавливающие бактерии, максимальное их количество дости­гало 104 / 107 клеток в 1 мл воды (Ромашкинское месторождение).

В глубокие нефтяные пласты бактерии заносят вместе с нагнетаемой водой. В естественных условиях сульфатвосстанавливающие бактерии встре­чаются в речных и морских водах, но особенно многочисленны в водах не­глубоких подземных горизонтов, содержащих углеводороды. Сульфаты весьма распространены в морской и пресной водах, содержатся в некоторых пластовых водах, а также выщелачиваются закачиваемой водой из гипсоносных пород.

Промысловые наблюдения показывают, что обычно сероводород появля­ется в призабойной зоне нагнетательных скважин через год после закачки воды, содержащей сульфатвосстанавливающие бактерии. По мере процесса разработки он достигает забоев эксплуатационных скважин, концентрируясь главным образом в попутных водах. Максимальные содержания достигают нескольких сот миллиграммов на 1 л, нередки концентрации до 100 мл/л, обычные значения 40—50 мл/л. С появлением сероводородной воды в экс­плуатационных скважинах заметно увеличивается скорость коррозии нефте­промыслового оборудования. В настоящее время борьбе с сероводородным заражением нефтяных пластов уделяется большое внимание.

К изменению состава нефти и растворенного газа в процессе разработки при нагнетании в пласт воды приводит также избирательное растворение ряда компонентов в воде. Наиболее высокой растворимостью в воде обла­дают метан и азот, их содержание в попутном газе в процессе разработки с заводнением обычно заметно уменьшается. Уменьшение газосодержания пластовой нефти за счет удаления наиболее растворимых компонентов газа приводит к весьма заметному снижению давления насыщения, увеличению плотности и вязкости пластовой нефти.[3]

2. Давление и температура в залежах

В разрабатываемых залежах известна температура от близкой к нулю в газогидратных залежах до первых сотен градусов в глубоко залегающих пластах. Так, например, в скв. 1 Беневук (Техас, США) тем­пература на глубине 7266 м достигает 291 0С.

Температура в залежах зависит от глубины их залегания и геотер­мических особенностей соответствующего участка земной коры. Наибо­лее характерными показателями температурной обстановки в недрах яв­ляются геотермическая ступень и геотермический градиент. Изменение температуры в залежах оказывает существенное влияние на содержащиеся в них нефть и газ. Так, повышение температуры вызы­вает снижение вязкости нефти и воды и увеличение вязкости газов. Изменение температуры пласта ведет к изменению объема газа, воды и породы. При увеличении температуры в изолированном резервуаре повы­шается давление. Значительный рост температуры может привести к суще­ственной перестройке углеводородных молекул. С изменением темпера­туры связано изменение соотношения фаз в залежи и растворимости газов в нефти и воде. С повышением температуры, как правило, увеличивается растворимость солей в воде и растет минерализация вод. С ро­стом минерализации уменьшается растворимость газов в воде.

Давление в залежи, или пластовое давление, представляет собой дав­ление, которое флюиды оказывают на вмещающие их породы. Давление в залежи на контакте с водой предопределяется гидростатическим давле­нием в резервуаре на данном уровне.

В залежи вследствие наличия разницы между плотностями находя­щихся в них флюидов возникает избыточное давление Dри, пред­ставляющее собой разницу между давлением в точке измерения внутри залежи УВ и тем давлением, которое наблюдалось бы в этой точке в слу­чае отсутствия скопления УВ и заполнения всей ловушки пластовой во­дой: Dри =р3 - рг, где рз — давление, измеренное в залежи; рг — гидро­статическое давление, соответствующее высоте точки замера в залежи. Избыточное давление в любой точке нефтяной или газовой залежи определяется по формуле Dри = h(rв—rн.г), где h — высота точки опре­деления в нефтяной или газовой залежи над поверхностью раздела с во­дой; (rв—rн.г) — разница плотностей воды и нефти или газа.

Избыточное давление в любой точке газовой шапки рассчитывают по уравнению Dри = hн (rв—rн)+ hг (rв—rг), где hн — высота нефтяной части залежи; hг — высота точки определения над разделом газ — нефть. По формуле возможно определение положения разделов газ — нефть, нефть — вода или газ — вода в пространстве по замерам давления в одной сква­жине, пробуренной на залежь, при условии, что известно положение пьезометрической поверхности в резервуаре.

Энергетическое состояние залежи также в значительной степени обус­ловлено ее температурным режимом и пластовым давлением. Говоря об энергии залежей, следует различать свободную химическую и потенциаль­ную энергию. Запасы свободной химической энергии (основной объект добычи) определяются количеством УВ и их химическим составом — од­нако энергия, как правило, не используется при разработке. Находящиеся в резервуаре вода, нефть и газ образуют энергетическую систему. Обычно (но далеко не всегда) основной запас потенциальной энергии такой си­стемы определяется энергией воды.[4]

Изменение пластовых давления и температуры в процессе разработки залежи.

Разработка залежей, сопровождающаяся изменением давления (иногда и температуры), нарушает термодинамические равновесия подземных флюидов и приводит к существенному изменению состава и свойств добываемых нефти и газа.

Для нефтяных залежей снижение пластового давления ниже давления насыщения нефти газом вызывает снижение газосодержания пластовой нефти. Вследствие этого увеличиваются ее вязкость и плотность, уменьша­ется объемный коэффициент. Однако процессы подземной дегазации практи­чески не отражаются на свойствах добываемой нефти, но приводят к изме­нению состава попутно добываемого газа. В соответствии с особенностями растворимости газов в нефти при снижении пластового давления в залежи первыми переходят в свободную газовую фазу наименее растворимые азот и метан, затем при еще большем снижении давления освобождаются этан, пропан, бутан и др., а в конечной стадии дегазации — углекислота и серово­дород. В соответствии с этим попутные газы могут резко изменить свои со­став в процессе разработки на режиме истощения. Увеличение содержания СО2 в составе попутного газа может быть вызнано его выделением не только из нефти в результате снижения пластового давления, но и из водорастворенного газа. Рост содержания СО2 за счет его выделения из пластовых вод проявляется при сильном обводнении продукции на заключительной стадии разработки.[5]

Страница:  1  2  3 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы