Безопасность жизнедеятельности

Т(r,t) < Tкр, В(r,t) < Вкр, М(r,t) < Mкр, Сi(r,t) < С iкр.

Здесь и выше Т - температура, Tд, Tкр - допустимое и критическое значение температуры, В - дозовая нагрузка, Вд, Вкр - допустима и критическая дозовая нагрузка, Mд, Mкр - допустимое и предельное значение механической, например, шумовой, нагрузки, Сi - концентрация i-того вещества в биосфере, С iд - предельно-допустимая к

онцентрация (ПДК), С iкр - критическая концентрация i-того вещества.

Разнообразные техногенные воздействия на окружающую среду характеризуются их частотой повторения и интенсивностью. Например, выбросы вредных веществ имеют некоторую постоянную составляющую, соответствующую нормальной эксплуатации, и случайную компоненту, зависящую от вероятностей аварий, т.е. от уровня безопасности рассматриваемого объекта. Ясно, что чем тяжелее, опаснее авария, тем вероятность ее возникновения ниже. Эти воздействия и соответствующие им последствия могут быть разбиты на незначимые, допустимые и недопустимые области. По-видимому, разумно ввести некоторые относительные коэффициенты вредности воздействий на данные элементы экосистем по отношению к некоторым эталонам. Разумеется, в качестве эталона мог бы быть взят человек. Например, нам известно сейчас по горькому опыту Чернобыля, что сосновые леса имеют радиочувствительность похожую на то, что характерно для человека, а смешанные леса и кустарники - в 5 раз меньшую. Учитывая, что воздействия АС на биосферу не ограничиваются лишь радиационными факторами, ясно, что реальную защиту окружающей среды следует строить на основе нормативного эшелонирования защит от всех воздействий, влияющих на состояния экосистем. Меры предупреждения опасных воздействий, их предотвращения при эксплуатации, создания возможностей для их компенсации и управления вредными воздействиями должны приниматься на стадии проектирования объектов. Это предполагает разработку и создание систем экологического мониторинга регионов, разработку методов расчетного прогнозирования экологического ущерба, признанных методов оценивания экологических емкостей экосистем, методов сравнения разнотипных ущербов. В пределе эти меры должны создать базу для активного управления состоянием окружающей среды.

В настоящее время принято обосновывать экологическую безопасность атомных электростанций при их проектировании в несколько стадий.

В начале работ, до реального проектирования АС разрабатывается т. н. Концепция экологической безопасности АС, в которой оценивается состояние окружающей среды в районе предполагаемого строительства АС и определяется уровень допустимых воздействий на природное окружение, т.е. тот уровень, который согласуется с природоохранным и санитарно-гигиеническим законодательством, учитывает социальные аспекты экологической безопасности - сохранность ценных природных комплексов, возможные изменения в жизненном укладе населения, структуре землепользования региона, а также предполагаемую реакцию населения, обеспечивает отсутствие значительного вмешательства в природные процессы и серьезных воздействий на биогеоценозы на прилежащих к АС территориях.

Затем, в рамках Технико-экономического обоснования - ТЭО разрабатывается Оценка воздействий АС на окружающую среду - АВОС АС, а далее, уже на стадии проекта АС разрабатывается т. н. Обоснование экологической безопасности - ОЭБ АС, в котором подтверждается соответствие технических решений требованиям Концепции охраны окружающей среды в регионе.

Вопрос 9. Что такое пожар? Факторы, влияющие на возникновение и распространение пожаров. Средства и методы локализации и тушения пожаров. Меры по предотвращению возникновения пожаров.

Каждый пожар представляет собой единственную в своем роде ситуацию, определяемую различными событиями и явлениями, носящими случайный характер, например изменение направления и скорости ветра во время пожара и т.п. Поэтому точно предсказать развитие пожара во всех деталях не представляется возможным. Однако пожары обладают общими закономерностями, что позволяет построить аналитическое описание общих явлении пожаров и их параметров.

Основные явления, сопровождающие пожар,– это процессы горения, массо - и теплообмена. Они изменяются во времени, пространстве и характеризуются параметрами пожара. Пожар рассматривается как открытая термодинамическая система, обменивающаяся с окружающей средой веществами и энергией.

Рассмотрим процессы, протекающие на пожаре, и параметры, их характеризующие.

Процесс горения на пожаре горючих веществ и материалов представляет собой быстро протекающие химические реакции окисления и физические явления, без которых горение невозможно, сопровождающиеся выделением тепла и свечением раскаленных продуктов горения с пламени.

Основными условиями горения являются: наличие горючего вещества, поступление окислителя в зону химических реакций и непрерывное выделение тепла, необходимого для поддержания горения.

Возникновение и распространение процесса горения по веществам и материалам происходит не сразу, а постепенно. Источник горения воздействует на горючее вещество, вызывает его нагревание, при этом в большей мере нагревается поверхностный слой, происходят активация поверхности, деструкция и испарение вещества, материала вследствие термических и физических процессов, образование аэрозольных смесей, состоящих из газообразных продуктов реакции и твердых частиц исходного вещества. Образовавшиеся газообразные продукты способны к дальнейшему экзотермическому превращению, а развитая поверхность прогретых твердых частиц горючего материала способствует интенсивности процесса его разложения. Концентрация паров, газообразных продуктов деструкции испарения (для жидкостей) достигает критических значений, происходит воспламенение газообразных продуктов и твердых частиц вещества, материала. Горение этих продуктов приводит к выделению тепла, повышению температуры поверхности и увеличению концентрации горючих продуктов термического разложения (испарения) над поверхностью материала, вещества. Устойчивое горение наступает, когда скорость образования горючих продуктов термического разложения станет не меньше скорости их окисления в зоне химической реакции горения. Тогда под воздействием тепла, выделяющегося в зоне горения, происходят разогрев, деструкция, испарение и воспламенение следующих участков горючих веществ и материалов.

К основным факторам, характеризующим возможное развитие процесса горения на пожаре, относятся: пожарная нагрузка, массовая скорость выгорания, линейная скорость распространения пламени по поверхности материалов, площадь пожара, площадь поверхности горящих материалов, интенсивность выделения тепла, температура пламени и др.

Под пожарной нагрузкой понимают массу всех горючих и трудногорючих материалов, находящихся в помещении или на открытом пространстве, отнесенное к площади пола помещения или площади, занимаемой этими материалами на открытом пространстве.

Пожарную нагрузку Р, кг/м2, определяют как сумму постоянной и временной пожарных нагрузок. В постоянную пожарную нагрузку включаются находящиеся в строительных конструкциях вещества и материалы, способные гореть. Во временную пожарную нагрузку включаются вещества и материалы, обращающиеся в производстве, в том числе технологическое и техническое оборудование, изоляция, мебель и другие материалы, способные гореть.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40 


Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы