Радиационные аварии, их виды, динамика развития, основные опасности
2. Основные опасности при авариях на РОО
В настоящее время практически любая отрасль хозяйства и науки использует радиоактивные вещества и источники ионизирующих излучений. Высокими темпами развивается ядерная энергетика.
Ядерные материалы приходится возить, хранить, перерабатывать. Это создает дополнительный риск радиоактивного загрязнения окружающей среды,
поражения людей, животных и растительного мира.
В результате аварий могут возникнуть обширные зоны радиоактивного загрязнения местности и происходить облучение персонала ядерно - и радиационно-опасных объектов (РОО) и населения, что характеризует создавшуюся ситуацию как чрезвычайную. Степень опасности и масштабы этой ЧС будут определяться количеством и активностью выброшенных радиоактивных веществ, а также распад ионизирующих излучений.
Радиационные аварии подразделяются на:
· локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;
· местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;
· общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.
К типовым радиационно-опасным объектам следует отнести: атомные станции, предприятия по изготовлению ядерного топлива, по переработке отработанного топлива и захоронению радиоактивных отходов, научно-исследовательские и проектные организации, имеющие ядерные реакторы, ядерные энергетические установки на транспорте.
Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.
Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:
· по типовым нарушениям нормальной эксплуатации;
· по характеру последствий для персонала, населения и окружения среды.
При анализе аварий используют цепочку "исходное событие-пути протекания-последствия".
Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.
Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.
Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.
Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.
Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.
Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.
Основными поражающими факторами радиационных аварий являются:
· воздействие внешнего облучения (гамма - и рентгеновского; бета - и гамма-излучения; гамма - нейтронного излучения и др.);
· внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бета-излучение);
· сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;
· комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).
После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.
Внутренне облучение развивается в результате поступления радионуклидов в организм с продуктами питания и водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливается щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.
Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.
Характер распределения радиоактивных веществ в организме:
· накопление в скелете (кальций, стронций, радий, плутоний);
· концентрируются в печени (церий, лантан, плутоний и др.);
· равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);
· радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.
Основными параметрами, регламентирующими ионизирующее излучение, является экспозиционная, поглощенная и эквивалентная дозы.
Экспозиционная доза - основана на ионизирующем действия излучения, это - количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см2 воздуха образуется 2,08 · 109 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) · 1Кл/кг=3876 Р.
радиационная авария облучение дозиметрический
Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ - 1 Грей (Гр).1 Гр=100 рад.
Эквивалентная доза (ЭД) - единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв).1 Зв равен 100 бэр.
Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:
Поиск рефератов
Последние рефераты раздела
- О средствах защиты органов дыхания от промышленных аэрозолей
- Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)
- О средствах индивидуальной защиты от пыли
- И маски любят счёт
- Правильное использование противогазов в профилактике профзаболеваний
- Снижение вредного воздействия загрязнённого воздуха на рабочих с помощью СИЗ органов дыхания
- О средствах индивидуальной защиты органов дыхания работающих