Безопасность на предприятии
Применение одного местного освещения запрещено.
По функциональному назначению искусственное освещение подразделяется на следующие виды:
1 – рабочее;
2 – аварийное;
3 – специальное.
Рабочее освещение – обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы, прохода людей и движения транспорта.
Аварийное освещение – предусматривается д
ля обеспечения минимальной освещенности в производственных помещениях на случай внезапного отключения рабочего освещения.
Специальное освещение – бактерицидное, эритемное.
Эритемное (искусственное ультрафиолетовое) облучение должно предусматривать на предприятиях в районах за Северным Полярным кругом, а также в средней полосе при отсутствии или недостаточном естественном освещении. Хорошо известно положительное биологическое действие ультрафиолетовых лучей на:
Обмен веществ
Дыхательные процессы
Активизацию кровообращения и т.д.
Максимальное эритемное действие оказывает излучение с длиной действия волны 297 нм. Эритемное облучательное устройство применяется в 2-х системах:
1 – установки длительного действия;
2 – установки кратковременного действия.
Облучение проводят в осенне-зимний период и ранний весенний периоды.
Бактерицидное облучение применяется для обеззараживания воздуха в производственных помещениях, питьевой воды, продуктов питания. Наибольшей бактерицидной эффективностью обладают УФИ с длинами волн 254 – 257 нм, создаваемые специальными лампами.
Основные требования к производственному освещению
Создание благоприятных условий труда, быстрое утомление зрения, возникновение несчастных случаев и способствующих повышению производительности труда, возможно только осветительной установкой, отвечающей следующим требованиям:
1. Освещенность на рабочем месте должна соответствовать зрительным условиям труда согласно гигиеническим нормам. Увеличение освещенности должно иметь предел, т.к. увеличение освещенности уже не будет давать эффекта и тогда необходимо улучшать качественные характеристики освещения.
2. Обеспечение достаточно равномерного распределения яркости на рабочей поверхности, а также в пределах окружающего пространства. Если это не будет выполняться, то при переводе взгляда с ярко освещенной поверхности на слабо освещенную поверхность глаз вынужден будет переадаптироваться, что ведет к утомлению зрения. Адаптация – способность глаза изменять чувствительность при изменении условий освещения. Для повышения равномерности естественного освещения осуществляется комбинированное освещение. Светлая окраска потолка, стен и производственного оборудования способствует созданию равномерного распределения яркостей в поле зрения. Недостаточное освещение рабочего места затрудняет зрительную работу, вызывает повышенное утомление и способствует развитию близорукости. Слишком низкие уровни освещённости вызывают апатию и сонливость, а в некоторых случаях способствует развитию чувства тревоги. Длительное пребывание в условиях недостаточного освещения сопровождается снижением интенсивности обмена веществ в организме и ослаблением его реактивности. К таким же последствиям приводит длительное пребывание в световой среде с ограниченным спектральным составом света и монотонным режимом освещения. Излишне яркий свет слепит, снижает зрительные функции, приводит к перевозбуждению нервной системы, уменьшает работоспособность, нарушает механизм сумеречного зрения. Воздействие чрезмерной яркости может вызывать фотоожоги глаз и кожи, катаракты и другие нарушения тканей.
Задание 2
Электромагнитные поля. Классификация электромагнитных полей. Защита от излучений. Ионизирующие излучения и их действие на организм. Нормирование излучения
На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Магнитное поле создается при движении электрических зарядов по проводнику. Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м. По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне). Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1. В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.
Классификация электромагнитных волн по частотам
Наименование частотного диапазона |
Границы диапазона |
Наименование волнового диапазона |
Границы диапазона |
Крайние низкие, КНЧ |
3 - 30 Гц |
Декамегаметровые |
100 - 10 Мм |
Сверхнизкие, СНЧ |
30 – 300 Гц |
Мегаметровые |
10 - 1 Мм |
Инфранизкие, ИНЧ |
0,3 - 3 кГц |
Гектокилометровые |
1000 - 100 км |
Очень низкие, ОНЧ |
3 - 30 кГц |
Мириаметровые |
100 - 10 км |
Низкие частоты, НЧ |
30 - 300 кГц |
Километровые |
10 - 1 км |
Средние, СЧ |
0,3 - 3 МГц |
Гектометровые |
1 - 0,1 км |
Высокие частоты, ВЧ |
3 - 30 МГц |
Декаметровые |
100 - 10 м |
Очень высокие, ОВЧ |
30 - 300 МГц |
Метровые |
10 - 1 м |
Ультравысокие,УВЧ |
0,3 - 3 ГГц |
Дециметровые |
1 - 0,1 м |
Сверхвысокие, СВЧ |
3 - 30 ГГц |
Сантиметровые |
10 - 1 см |
Крайне высокие, КВЧ |
30 - 300 ГГц |
Миллиметровые |
10 - 1 мм |
Гипервысокие, ГВЧ |
300 – 3000 ГГц |
Децимиллиметровые |
1 - 0,1 мм |
Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:
Поиск рефератов
Последние рефераты раздела
- О средствах защиты органов дыхания от промышленных аэрозолей
- Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)
- О средствах индивидуальной защиты от пыли
- И маски любят счёт
- Правильное использование противогазов в профилактике профзаболеваний
- Снижение вредного воздействия загрязнённого воздуха на рабочих с помощью СИЗ органов дыхания
- О средствах индивидуальной защиты органов дыхания работающих