Основы менеджмента
Комментаторы Лон Симмонс и Билл Кинг нашли материал превосходным и основную его часть запустили в эфир. Но тренер Билл Мартин компьютерные распечатки счел оскорблением. "У меня все вот здесь, — говаривал Билли, показывая на свою голову. — Я не нуждаюсь в этой ерунде."
Однако цифры помогают выявить кое-что пропущенное из статистики за прошлый сезон. Джеф Берроуз, к примеру, набирал
0,220 днем и 0,304 по вечерам. Узин Гросс имел 0,321 на искусственном покрытии, но всего 0,239 на траве. На Хита (0,338) можно было ставить в позиции нападения против таких бегунов, как Лопес (0,234). В этом сезоне Элвес намерен собрать гораздо более подробную информацию. "У меня будет записано, куда был отбит каждый мячик, — говорит он, — куда попадают удары игрока на линии, куда ложатся его ауты. Это позволит определить тенденции".
Так же важно, что компьютерная информация фиксирует тенденции в игре противника, и, если тренер видит определенную картину, он в состоянии скорректировать игру защитников. "Эта работа становится увлекательной, — говорит Элвес, — когда ты действительно влияешь на игру".
Время от времени в минувшем году и тренер Мартин проявлял интерес. Так, игрок команды соперников Боб Оучинко как-то вечером сказал журналистам, что без проблем мог бы побить оклендца Регги Джексона. Мартин попросил Элвеса дать информацию — ив самом деле Регги имел 1 к 9 против Оучинко. В следующий раз Мартин уже не так сопротивлялся идее не ставить их друг против друга.
Однако чаще всего Элвес работал непосредственно на комментаторов. "Когда игры проходят в Окленде, перед Биллом и Лоном стоит по монитору, — рассказывал он, — они сразу видят средний балл игрока по подачам за сезон и его успехи. Они могут получить его показатели дома и на выезде, против конкретного подающего, в играх с конкретной командой, даже его достижения в той или другой позиции".
"В бейсболе достаточно силен человеческий элемент, — говорит Элвес. — Если вы будете напирать на цифры, погубите игру. Идея заключается в том, чтобы использовать компьютер, но не давать ему поработить мозг".
Тренер намерен использовать информацию Элвеса, в основном, для предигровой подготовки. "Игроки, обсуждая предстоящего соперника, обычно спорят, кто, к примеру, отбивает высоко, а кто низко, или где удобнее всего стоять против определенной подачи. Наши подающие будут обо всем знать заранее".
Источник: San Francisco Chromicle, March 25, 1983, pp. 77, 80. Reprinted with permission.
ПРОВЕРКА МОДЕЛИ НА ДОСТОВЕРНОСТЬ. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить — все ли существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом, если задача сложна. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения, если предположить, что модель не слишком сложна в использовании.
Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству совладать с проблемой.
Продолжим наш пример. Если бы модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно было считать полезной, поскольку выходная информация позволила бы руководству принять эффективные корректирующие меры в отношении задержек поставок.
Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если ее удалось бы получить) помочь в разрешении производственных трудностей и ликвидации задержек.
ПРИМЕНЕНИЕ МОДЕЛИ. После проверки на достоверность модель готова к использованию. Как говорит Шеннон, ни одну модель науки управления "нельзя считать успешно выстроенной, пока она не принята, не понята и не применена на практике" . Это кажется очевидным, но зачастую оказывается одним из самых тревожных моментов построения модели. Согласно одному обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60% моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западноевропейские управляющие маркетингом недостаточно широко используют модели для принятия решений . Основная причина недоиспользования моделей руководителями, которые должны их применять, возможно заключается в том, что они их опасаются или не понимают.
Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и установлении требований по информации, получаемой из модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50%. Кроме того, таких руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения.
ОБНОВЛЕНИЕ МОДЕЛИ. Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных не ясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении — например, появление новых потребителей, поставщиков или технологии — может обесценить допущения и исходную информацию, на которых основывалась модель при построении.
Общие проблемы моделирования
Как все средства и методы, модели науки управления могут привести к ошибкам. Эффективность модели может быть снижена действием ряда потенциальных погрешностей. Наиболее часто встречающиеся — недостоверные исходные допущения, ограниченные возможности получения нужной информации, страхи пользователя, слабое использование на практике, чрезмерно высокая стоимость.
НЕДОСТОВЕРНЫЕ ИСХОДНЫЕ ДОПУЩЕНИЯ. Любая модель опирается на некоторые исходные допущения или предпосылки. Это могут быть поддающиеся оценке предпосылки, например, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предположения можно объективно проверить и просчитать. Вероятность того, что они точны, будет высока. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Предположение о росте сбыта в будущем году на 10% — пример допущения, не поддающегося проверке. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки являются основой модели, точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны прогнозы сбыта на предстоящий период.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Другие рефераты на тему «Менеджмент и трудовые отношения»:
- Основные пути снижения издержек при осуществлении операций по складированию продукции
- Типы организаций
- Интегрирование требований международных стандартов в систему менеджмента организации
- Анализ организации контроля исполнения документов
- Управление качеством продукции на машиностроительном предприятии