Биотехническая система электроанальгезии

Рисунок 2 – Частотные зависимости при синусоидальном стимуле:

а - модуль напряжения стимула; б - экспериментальные пороги возбуждения; в - пороги, рассчитанные для модели

Здесь же показаны зависимости для порогов возбуждения М-ответов срединного нерва для случая чрескожной регистрации при воздействии стимулом, имеющим квазимонохроматический спектр, а также рассчитанная по модели канала

воздействия для условий эксперимента.

Сопоставление зависимостей показывает, что для рассматриваемы условий стимуляции в области "верхних" частот, где происходит падение напряжения стимула, порог возбуждения, начиная с частот 10 .15 кГц удваивается и быстро растет. В области "средних" частот, там, где напряжение уменьшается не более чем в 2-раза, пороги возбуждения оказываются минимальными.

Таким образом, рассмотрение зависимостей чрескожных эффекте действия тока и характеристик возбудимости нервного волокна от частотных компонент воздействующего тока, с точки зрения критерия минимального порогового воздействия и уменьшения ноцицептивных эффектов под электродами, показывает существование области "средних" адекватных частот стимулирующего тока. Спектральное представление импульсного стимулирующего тока виде совокупности гармонических составляющих позволяет сформулировать частотно-избирательный подход к формированию тока, основанный на определении области адекватных частот составляющих спектра стимула и синтеза воздействующего тока на основе частотно-временного преобразования. Частотный спектр импульса тока прямоугольной формы имеет огибающую с максимумом, расположенным вблизи нулевой частоты. Основная часть энергии спектра сосредоточена в области ограниченной нулевой частотой и частотой первого минимума.

Таким образом, при использовании стимулов миллисекундного диапазона основные спектральные составляющие тока оказываются сосредоточенными в области наиболее низких значений болевого порога. Это ограничивает применение прямоугольных стимулов большой амплитуды для чрескожной противоболевой электронейростимуляции.

Спектр адекватного импульсного воздействия должен быть сосредоточен в той области частот, где электрокожные болевые пороги достаточно высоки, т.е. где активные потери достаточно малы. С этой точки зрения целесообразно увеличение частоты основных компонент стимулирующего тока. Однако с увеличением частоты происходит перераспределение тока в тканях, что вызывает уменьшение напряжения на возбудимой структуре.

Области адекватных частот спектральных составляющих стимулирующего тока можно ограничить значениями граничных частот, определяемых со стороны "низких" частот величиной, на которой происходит допустимое возрастание порога возбудимости нервной структуры.

Тогда спектр адекватного воздействия должен иметь параметры, определяемые значениями граничных частот:

Dfсп=fгр2 - fгр1 (1)

f0сп=fгр1+ 0,5Dfсп (2)

где Dfсп - ширина спектра, f0сп - центральная частота спектра.

По мере уменьшения Dfсп спектр воздействия вырождается в одну гармоническую составляющую, а его вид во временной области представляет непрерывное синусоидальное колебание. Однако необходимость импульсного характера стимулирующего тока, обусловленная общими закономерностями возбуждения нервных структур, требует выбора конечной величины Dfсп, не превышающей значения, определенного в соответствии с (1). Синтез импульсного сигнала, спектр которого "вписывается" в область адекватных частот, требует задания формы огибающей спектра и его параметров.

Спектры сигналов, расположенные симметрично относительно центральной частоты, соответствуют амплитудно-модулированным колебаниям с несущей, равной центральной частоте. Закон изменения амплитуды данного колебания определяется огибающей спектра, являющейся спектральной плотностью модулирующего колебания.

Задача синтеза временного вида сигнала по известной огибающей спектра для случая минимально-фазовых цепей может быть решена с помощью использования преобразования Лапласа.

Так, если для описания модуля огибающей спектра адекватного сигнала использовать выражение:

S(w) =A0w0 [(w02-w2+bc2) 2+4bc2w2] –1/2, (3)

где bc – параметр, описывающий форму огибающей, то временная форма сигнала может быть представлена в виде:

s(t) = A0exp(-bct) sinw0t, (4)

Данное выражение описывает амплитудно-модулированное импульсное колебание с несущей частотой w0 экспоненциально затухающей амплитудой с постоянной времени затухания равной bc-1. По мере расширения спектра длительность стимула уменьшается. На рис.2, а (кривые 1) синтезированный сигнал имеет форму радиоимпульса, где Т0 - период основной частоты.

Рассмотрение общих закономерностей электронейростимуляции показывает, что воздействующий ток, вызывающий возбуждение нервной структуры, должен быть униполярен. Вместе с тем, требование отсутствия постоянной составляющей в стимулирующем токе с целью исключения электролизных эффектов делает предпочтительным использование биполярного тока. Амплитудно-модулированные импульсные колебания, показанные на рис.2, удовлетворяют данным требованиям. Однако целесообразно перейти к формам стимула, отличающимся от данного вида более крутым фронтом, и использовать вместо заполняющего стимул синусоидального колебания короткие униполярные импульсы тока длительностью 1И с частотой следования, равной частоте несущей, и скважностью, равной 2. Форма огибающей спектра для данного случая показана на рис.2, а (кривые 2). Требование отсутствия постоянной составляющей удовлетворяется за счет формирования спада плоской вершины стимула и выброса противоположной полярности в паузе между стимулами, равного по площади стимулу. Частота следования формируемых таким образом пачек коротких униполярных импульсов тока выбирается исходя из диапазона частот естественной сенсорной афферентации в периферических нервах, равной соответственно 100 .250 Гц.

Рисунок 2 – Огибающие спектра (а) и временные формы стимула (б, в).

Эффективность подавления боли в БТС противоболевой электронейростимуляции может быть повышена путем оптимального выбора зон расположения электродов. Анализ условий достижения обезболивания, рассмотренных выше, показывает, что эффективность стимуляции может быть усилена за счет увеличения числа путей передачи, вызванной стимулами сенсорной афферентации. На практике это может быть осуществлено выбором таких зон расположения электродов, при которых охватывается возбуждением максимальное количество афферентов из очага болевого раздражения. Рассмотрение путей соматической иннервации показывает, что при чрескожной передаче стимула целесообразно располагать электроды паравертебрально в проекции задних корешков спинного мозга, иннервирующих область источника боли. Зоны наложения электродов выбираются в соответствии с сегментарной иннервацией кожных покровов и внутренних органов (табл.1). Длину электродов следует выбирать таким образом, чтобы они перекрывали не менее 1-2 сегментов выше и ниже показанных в таблице границ.

Страница:  1  2  3  4 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы