Метод наименьших квадратов в случае интегральной и дискретной нормы Гаусса
2.1 Квадратичное приближение таблично заданной функции по дискретной норме Гаусса
Рассмотрим задачу приближения функции в случае использования невязки в форме (6). Т.е. используем дискретную норму Гаусса:
(10)
где неизвестная функция аппроксимируется функцией из (9). Для известны лишь значения в различных точках , т.е. , где . Таким образом, для определения имеем задачу: найти точку минимума - невязки функции Гаусса - для таблично заданной функции , если
, (где ). (11)
Очевидно, что условия минимума дискретной функции невязки Гаусса - имеют вид:
, (12)
Эти условия для (11) преобразуются к виду:
, (13)
Раскрывая систему (13) получаем систему уравнений для определения коэффициентов разложения в виде:
(14)
Нетрудно увидеть, что вводя скалярные произведения в соответствующем функциональном пространстве в виде:
(15)
систему (14) можно переписать в нормальном виде Гаусса:
(16)
Ясно, что эта система имеет единственное решение, т.к. определитель системы (16) совпадает с определителем
Грама для базисных функций - которая отлична от нуля вследствие линейной независимости базисных функций.
Найдя из системы (16) и подставляя в (9) мы получаем функцию:
(17)
которая является приближением к функции в смысле минимума квадратичного отклонения Гаусса (10) по норме индуцированной скалярным произведением (15), действительно:
(18)
а дискретная норма Гаусса невязки имеет вид:
(19)
2.2 Интегральное приближение функции заданной аналитически
В предыдущем параграфе мы рассматривали приближение функции методом наименьших квадратов, предполагая, что значения функции заданы таблично, поэтому мы пользовались дискретной нормой Гаусса .
Рассмотрим теперь случай, когда аналитически заданную, на интервале , функцию - надо аппроксимировать обобщённым многочленом:
(20)
так, чтобы минимизировалась интегральная норма невязки Гаусса :
(21)
иначе говоря, нам нужно минимизировать интеграл
(22)
Для решения этой задачи подставим (20) в (22), тогда функционал (22) превратится в функцию многих переменных, т.е. . Условия же минимума функции многих переменных имеют вид:
, (23)
Эти условия приобретают вид:
(24)
т.е.
(25)
Определитель этой системы представляет собой определитель Грама для функций , в , поэтому система (25) имеет единственное решение . Подставляя эти значения в разложение (20) имеем приближение для . Характер приближения оценивается соответствующей нормой невязки .
Задача аппроксимации функции заданной аналитически часто применяется для вычисления интегралов.
2.3 Числовые примеры на применение метода наименьших квадратов Гаусса для приближения функций заданных таблично или аналитически
а) Рассмотрим пример в случае табличного задания функции :
Пример 1: пусть функция задана таблично:
|
0.5 |
1.0 |
1.5 |
2.0 |
2.5 |
3.0 |
|
0.31 |
0.82 |
1.29 |
1.85 |
2.51 |
3.02 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах