Гео-информационные системы и эпидемии гриппа
Ввод. Используемые в ГИС данные должны быть преобразованы в подходящий для обработки цифровой формат. Процесс преобразования информации от источников, например, с бумажных карт, в компьютерные файлы называется оцифровкой карт. В ГИС этот процесс автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных эпидемиологических проектов по противодействию крупномасш
табным эпидемиям или эпизоотиям. Многие эпидемические данные могут быть непосредственно переведены в форматы ГИС.
Манипулирование данными. При выполнении конкретного эпидемиологического исследования или проекта имеющиеся данные часто необходимо дополнительно видоизменить в соответствии с требованиями задачи, например, при решении оперативного анализа или прогноза эпидемии на территории крупного города. Эпидемические данные удобнее представить в едином масштабе, при этом ГИС предоставляет самые разные инструменты и способы манипулирования пространственными данными, необходимые для решения конкретной задачи.
Управление данными. В небольших эпидемических исследованиях или проектах исходная информация может храниться в виде обычных файлов. При расширении проекта или исследования, которые приводят к увеличению объемов информации, росту числа пользователей ГИС, эффективнее всего применять системы управления базами данных (СУБД), т.е. специальные компьютерные средства ГИС, "настроенные" для работы с интегрированными базами данных. В ГИС используют реляционную структуру баз данных, в которых данные хранятся в табличной форме, и для связывания различных таблиц применяются общие поля данных. Это самый простой и достаточно гибкий подход, широко используемый для работы с данными в ГИС.
Запрос и анализ информации. В ГИС нетрудно поставить и получить ответы на достаточно простые вопросы: "Где расположена клиника? На каком расстоянии друг от друга расположена клиника и очаг инфекционного заболевания? Где расположен склад с конкретными медикаментами? Как безопасно транспортировать инфекционных больных по городу? " Возможны и еще более сложные, или требующие дополнительного анализа, запросы: "Где есть места для инфекционных больных в клиниках города? Каков тип инфекционных палат в клиниках? Как повлияет на процесс распространения инфекции перемещение больных на неподготовленном транспорте по густонаселенной территории города? " Запросы можно задавать как простой манипуляцией "мыши" на определенном эпидемическом объекте, так и с помощью развитых аналитических процедур. В ГИС можно задавать информационные шаблоны для поиска, проигрывать сценарии процессов появления и развития эпидемий (эпизоотий) по типу "что будет, если …". Современные ГИС имеют множество мощных аналитических инструментов, которые нетрудно модифицировать для проведения эпидемиологического анализа.
Например, в ходе проведения эпидемиологического анализа необходимы оценки меры близости эпидемических объектов относительно друг друга. С этой целью в ГИС запускается специальный поисковый процесс, который помогает ответить на вопросы типа: "Сколько домов с больными холерой находится в пределах 100 м от зараженного водоема? Сколько человек проживает или сколько содержится восприимчивых животных не далее 2 км от очага природно-очаговой инфекции? ".
Другой эффективный инструмент эпидемиологического анализа связан с процессом наложения разрозненных исходных данных, т.е. интеграции данных, расположенных в разных эпидемиологических или тематических слоях на общей карте. В простейшем случае - это операция отображения набора эпидемиологических данных на общий ландшафт, что дает новую "синтетическую" информацию по значимости причинно-следственных связей в эпидемиологическом расследовании. Наложение, или пространственное объединение эпидемиологических данных позволяет, например, интегрировать данные о состоянии природного очага, почвах, растительности и динамики посещения очага восприимчивыми людьми и роста заболеваемости населения природно-очаговыми инфекциями.
Визуализация данных. Для многих типов пространственных операций с эпидемическими данными конечным результатом является их представление в виде карт или графиков. Карта - очень эффективный и информативный способ отображения и хранения эпидемической информации. Раньше карты территорий, где были возможны эпидемии или эпизоотии, создавались на длительное время, но ГИС предоставляет новые инструменты, расширяющие и развивающие искусство картографии по каждой конкретной эпидемической ситуации. С помощью инструментов ГИС возможна визуализация самих карт, которые наполняются текущей эпидемической информацией и данными в виде отчетных документов, графиков, таблиц, фотографий и современными мультимедийными средствами.
Далее приводится пример использования некоторых инструментов ГИС при решении задачи прогнозирования эпидемии гриппа на территории России.
2. Моделирование эпидемии гриппа
Предпосылки моделирования. Грипп передается воздушно-капельным путем и чрезвычайно контагиозен. Дальность рассеивания вируса обычно не превышает 2-3 метра. Непосредственно вокруг больного образуется зараженная зона с максимальной концентрацией мелкодисперстных аэрозольных частиц. Частицы размером 100 мкм и более (крупнодисперстная фаза) быстро оседают. При прямом контакте с источником инфекции в зараженной зоне вирусные частицы аспирируются и задерживаются на эпителии дыхательных путей восприимчивого организма. Инкубационный период болезни (E) в среднем составляет 2 суток, инфекционный (лихорадочный) период (Y) продолжается 2-4 дня, и заболевание заканчивается в течение 8-10 дней (рисунок 2).
Рисунок 2. Схема стадий-состояний развития эпидемии гриппа в городе.
P - население территории;
S - восприимчивые;
E - в инкубации;
I - инфекционные больные;
R - переболевшие гриппом;
F - умершие от осложнений,
МП - воздушно-капельный механизм передачи инфекции.
В ходе изучения эпидемий гриппа XX века была выявлена зависимость уровня заболеваемости населения гриппом от его численности. Наибольшая эпидемическая заболеваемость отмечается в городах с населением в 1 млн. человек и больше, что составляет 11.3% всех случаев гриппа на территории страны. В городах с населением от 500 тысяч до 1 млн. человек эта цифра составляет 10.9%, а с населением меньше 500 тысяч - уже 9.7%.
Математическая модель эпидемии гриппа. Модель отражает динамику развития эпидемии среди населения города при непрерывном заражении лиц за счет воздушно-капельного механизма. Соотношения этой модели представляют систему нелинейных интегро-дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями.
1. Число восприимчивых лиц X(t) среди населения города:
с начальным условием: X(t0) =(1-α) P(t0).
2. Число лиц в инкубационном периоде гриппа:
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности