Анализ существующих подходов к системам локализации области губ человека на изображении
В результате работы строится эффективный алгоритм построения векторов признаков губ для задачи распознавания речи. Алгоритм позволяет преобразовать данные контуров губ в наборы признаков, пригодных для распознавания. Алгоритм обладает свойствами надежности и устойчивости и легко интегрируется с системой распознавания речи на основе скрытых Марковских моделей.
3.2 Актуальн
ость работы
Развитие компьютерной техники ведет к усовершенствованию интерфейсов между человеком и компьютером. Один из важнейших способов человеческой коммуникации - речь, поэтому надежный ввод речевой информации является важным направлением усовершенствования человеко-машинных интерфейсов. Даже у самых надежных систем распознавания речи, основанных только на звуке, точность резко ухудшается при искажении звуковой информации шумами различной природы. При наличии нескольких говорящих система распознавания речи сталкивается с проблемой идентификации говорящего в данный момент. Поэтому целесообразно использование также видеоинформации, что также является важной частью человеческого восприятия речи. Эксперименты ученых, данной области, показывают, что аудиовизуальная система ввода информации более надежна, чем просто аудио система, а значит, актуальна в наше время.
3.3 Обоснование выбранного метода направления исследования
Входе проведенного анализа существующих подходов к решению задачи локализации области губ человека на изображении, были выявлены достоинства и недостатки методов. В методе распознавание контуров губ в видеопотоке, за счет наложения более жестких ограничений на форму контура, алгоритм позволяет производить более точное и быстрое распознавание. Количество итераций также сокращается за счет получения хорошего начального приближения на втором этапе и в отличие от алгоритмов на основе активных контурных моделей, этот алгоритм дает приемлемые результаты при меньшем числе итераций. Рассматривая применение метода скрытых Марковских моделей можно выделить некоторые преимущества и недостатки. Такой метод позволяет работать непосредственно со сжатыми изображениями, такими как JPEG и MPEG, в которые на сегодняшний день являются распространёнными форматами хранения изображений и видео, что является большим преимуществом. А так же одним из полезных свойств СММ является способность сегментировать распознаваемое изображение. Метод скрытых Марковских моделей позволяет учесть локальные деформации и взаимное расположение участков изображений. Но в отличие от оптических потоков и других методов сопоставления деформациями, псевдодвумерная модель учитывает характер деформаций, а то какими именно могут быть возможные деформации, псевдодвумерные СММ усваивают в процессе обучения. Еще одним недостатком является то, что скрытые Марковские модели не обладают различающей способностью. Т.е. алгоритм обучения только максимизирует отклик каждой модели на свои классы, но не минимизирует отклик на другие классы, и не выделяются ключевые признаки, отличающие один класс от другого.
Данная область исследования является актуальной в наше время и не может не заинтересовать, потому как методы локализации недостаточно изучены и требуют дальнейших разработок.
4. Этапы выполнения НИРС
Таблица 1 – Этапы разработки
№ |
Этапы разработки |
Недели |
1. |
Сведения об объекте исследования |
1-3 |
2. |
Цель работы |
3-5 |
3. |
Выбор направления исследования |
5-8 |
4. |
Защита НИРС |
10 |
5. Ожидаемые результаты
В дальнейших работах планируется устранение недостатков метода скрытых Марковских моделей, а именно улучшения способов начального представления изображения и алгоритмов тренировки, что позволило бы повысить точность распознавания при меньшем объеме информации. А так же эта разработка должна повысить точность системы распознавания речи за счет использования дополнительной визуальной информации. Это, в частности, способствует усовершенствованию интерфейса между человеком и компьютером.
Список использованных источников
1. Michael J. Jones, James M. Rehg, Statistical Color Models with Application to Skin Detection. In CVPR, 1999
2. B.D. Zarit, B.J. Super, and F.K.H. Quek, Comparison of five color models in skin pixel classification. In Proceedings of the International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pages 58-63, Kerkyra, Greece, September 1999.
3. Вежневец В. П. Локализация человеческого лица на цветном растровом изображении // Труды конференции «Математические методы распознавания образов» (ММРО - 10). – 2001
4. Самаль Д.И., Старовойтов В.В. Выбор признаков для распознавания на основе статистических данных // Цифровая обработка изображений. - Минск: ИТК, 1999. - С. 105-114.
5. Самаль Д.И., Старовойтов В.В. Методика автоматизированного распознавания людей по фотопортретам // Цифровая обработка изображений. - Минск: ИТК, 1999. - С. 81-85.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
- Разработка веб-приложения для информационного обеспечения учебного процесса (видеокасты)
- Проектирование и реализация базы данных средствами Access
- Компьютерные вирусы и борьба с ними
- Классификация и характеристика видов, методов и средств защиты информации
- Разработка системы моделирования наблюдения за группировкой кораблей
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности