Метод проведения полевого опыта
Х2 ср = 905/4 = 226,25
S2 = ∑(Х – Хср)2 /n-1 = 6396,75/3 = 2132,25
S = √ S2 = 46,17
V = S/ Хср2 * 100 = 46,17/226,25*100 = 20,41%
S Хср2 = √ S2/n = √2132,25/4 = 23,09
S Хср % = S Хср/ Хср2 * 100% = 23,09/226,25*100 = 10,20 %
Х2 ср ±t05 S Хср2 = 258±3,18*23,09 = 226,25±73,43(152,82 - 299,67)
Х2 ср ±t01 S Хср2 =258 ±5,84*23,09 = 226,25±97,70 (
128,55 – 323,95)
Итак, средняя изучаемой совокупности с 95%-ным уровнем вероятности находится в интервале 152,82 - 299,67и с 99%-ным уровнем - в интервале 128,55 – 323,95. вероятность ошибочного заключения в первом случае составляет 5%, а во втором – 1%. Абсолютная ошибка средней S Хср равна 23,09 и относительная ошибка равна 10,20 %. Коэффициент вариации в данном случае V=20,41% характеризует в данном примере ошибку параллельных анализов.
Далее необходимо определить, существенно ли различаются эти выборочные средние при 0,95-95% уровне вероятности или 0,05-5% уровне значимости, т.е. проверить нулевую гипотезу
Н0: µ1 - µ2 = d = 0.
Х1 ср ±t01 S Хср1 =233 ±5,84*21.76 = 233±127.08 (105.92 – 360.08)
Х2 ср ±t01 S Хср =226,25 ±5,84*23,09 = 226,25±97,70 (128,55 – 323,95)
Доверительные интервалы для генеральных средних перекрывают друг друга, и, следовательно, разность между выборочными средними d = Х1 ср - Х2 ср = 233-226,25 = 6.75 нельзя переносить на генеральные средние µ1 и µ2, так как генеральная разность между ними D = µ1 - µ2 может быть равна и нулю и даже отрицательной величине, когда µ2 >µ1. Поэтому гипотеза Н0 : d = 0 не отвергается.
Нулевую гипотезу об отсутствии существенных различий между выборочными средними можно проверить и другим способом интервальной оценки генеральных параметров совокупности. По формуле
Sd = √( S Хср12 + S Хср22 )
можно определить ошибку разности средних, а затем рассчитать доверительные интервалы для генеральной разности средних D. Если доверительные интервалы перекрывают нулевое значение и включают область отрицательных величин, то Н0:d = 0 не отвергается, а если лежат в области положительных величин, то Н0 отвергается и разность признается существенной.
Имеем:
d = Х1 ср - Х2 ср = 233-226,25 = 6.75
Sd = √( S Хср12 + S Хср22 ) = √(21.762+ 23,092) = 31.73
При n1 + n2 – 2 = 4+4-2 = 6 степенях свободы t05 = 2.45 и t01 = 3,71
Найдем доверительные интервалы для генеральной разности:
95% - d± t05sd = 6.75±2.45*31.73 = 6.75±77.74 (-70.99 – 84.49)
99% - d± t05sd = 6.75±3,71*31.73 = 6.75±117.72 (-110.97 – 124.47)
Нулевая гипотеза Н0:d = 0 не отвергается, так как доверительные интервалы включают нуль и область отрицательных величин, т.е. разность меньше предельной случайной ошибки разности (d<tsd ).
Далее оценим существенность разности выборочных средних по t‑критерию.
Фактическое значение критерия существенности находим по соотношению:
t = (х1ср - х2ср )/ √( S Хср12 + S Хср22 ) = (233-226,25)/31.73 = 0.21
Сопоставляя фактическое значение t с теоретическим, приходим к выводу, что tфакт < t05 и 2.45 и tфакт < t01 . Следовательно, разность несущественна.
Оценим существенность разности по критерию F.
F = s12 / s22
s12 = 21.762 = 473.49
s22 = 23,092 = 533.15
F05 = 6.39
F01 = 15.98
F = s12 / s22 = 473.49/533,15 = 0, 88
Получаем:
Fф < F05 и Fф < F01
Следовательно, нулевая гипотеза не отвергается, между всеми выборочными средними нет существенных различий.
Задача 3
Обработать методом дисперсионного анализа урожайность однофакторного полевого опыта с однолетней культурой, проведенного методом рендомизированных повторений.
При выполнении данного задания воспользоваться методикой (1, с.232-233). Итоговые таблицы оформить по типу табл. 62 (1, с. 243). Варианты оценить с учетом дисперсионного анализа. Установить лучший вариант по урожайности.
Предусмотрено подвергнуть дисперсионному анализу урожайность двух полевых опытов, из них один с картофелем (табл. 5), второй – с ячменем (табл.6).
Решение:
Таблица 5
Урожайность картофеля, 10-1 т с 1 га
Вариант |
Повторение, Х |
Сумма V |
Средняя хср | |||
1 |
2 |
3 |
4 | |||
1 |
245 |
290 |
217 |
180 |
930 |
233 |
2 |
240 |
282 |
210 |
173 |
905 |
226,25 |
3 |
234 |
278 |
207 |
172 |
891 |
222.75 |
∑Р |
719 |
850 |
634 |
525 |
∑Х = 2728 |
Хср 0 = 227.33 |
Для вычисления сумм квадратов исходные даты преобразовываем по соотношению Х1 = Х-А, приняв за исходное А число 250, близкое к Хср. Преобразованные даты записываем в табл. Правильность расчетов проверяем по равенству ∑Р = ∑V = ∑Хср 0
Таблица 6
Таблица преобразованных дат
Вариант |
Х1 = Х-А |
Сумма V | |||
1 |
2 |
3 |
4 | ||
1 |
-5 |
40 |
-33 |
30 |
32 |
2 |
-10 |
32 |
-40 |
-77 |
-95 |
3 |
-16 |
28 |
-43 |
-78 |
-109 |
∑Р |
-31 |
100 |
-116 |
-125 |
∑Х = -172 |
Другие рефераты на тему «Сельское, лесное хозяйство и землепользование»:
Поиск рефератов
Последние рефераты раздела
- Выращивание цветочных растений в закрытым и открытом грунте в условиях континентального климата центра России
- Выращивание ремонтного молодняка кур
- Вирусные болезни сельскохозяйственных животных
- Влияние водопроницаемости биологически активного слоя чернозема выщелоченного на развитие водной эрозии
- Влияние различных норм расхода гербицида дублон голд на силосную продуктивность и качество урожая кукурузы
- Выращивание картофеля
- Грубые корма