Влияние ультразвука на ЭПР и фотолюминесценцию кристаллов ZnS
В таблице 2 суммированы результаты измерений фокусного расстояния и фокально пятна для линз №№1-4, которые отличаются числом микролинз. Линза №1 содержит 102 сферические микролинзы, линза №2 - 349 микролинз, линза №3 - 224 микролинзы, линза №4 - 112 микролинз. Радиус кривизны поверхности у всех линз равен 100 мкм.
Таблица 2. Результаты измерений фокусного расстояния и фокального пятна лин
з №№ 1-4.
Номер линзы |
1 |
1 |
2 |
2 |
3 |
3 |
4 |
Энергия фотонов, кэВ |
8 |
7 |
18 |
20 |
12 |
14 |
18 |
Число микролинз в линзе |
102 |
102 |
349 |
349 |
224 |
224 |
112 |
Радиус кривизны линзы, мкм |
100 |
100 |
100 |
100 |
100 |
100 |
100 |
Измеренное расстояние до плоскости изображения, мм |
140 |
100 |
208 |
250 |
146 |
195 |
575 |
Рассчитанное расстояние до плоскости изображения, мм |
126 |
97 |
192 |
240 |
147 |
195 |
590 |
Измеренное фокусное пятно, мкм |
2.7 |
4 |
1.5 |
2.1 |
2.2 |
3.0 |
2.7 |
Рассчитанный размер фокусного пятна, мкм |
3.2 |
2.7 |
0.08 |
0.1 |
2.5 |
3.3 |
0.8 |
Измеренное пропускание линзы,% |
27 |
5 |
39 |
46 |
9.5 |
21.5 |
-- |
Размер пучка в фокальной плоскости для линз № 1 и № 2 определялся методом "ножа", для линзы № 3 - методом сканирования в пределах флуоресцентной мишени, для линзы № 4 - с использованием CCD - камеры. Размер пучка приведен только для измерения в одном направлении - вертикальном.
К настоящему времени довольно подробно изучен зонный метамагнитный переход в соединениях типа Co2, в которых R¢ и R¢¢ - либо легкие редкоземельные металлы, либо тяжелые. Переходы и в тех и в других системах объясняются на основе модели эффективного критического поля Heff, действующего со стороны подсистемы локализованных f-электронов R-ионов на подсистему коллективизированных электронов, образованную, главным образом, d-электронами кобальта. Согласно этой модели зонный метамагнитный переход имеет место, если величина эффективного поля превышает критическое значение H» 70 Тл. В отсутствие внешнего магнитного поля величина Heff пропорциональна намагниченности R-подсистемы. Как известно, в соединениях RCo2 с легкими редкоземельными ионами магнитные моменты R - и Co-подсистем параллельны между собой, а в соединениях с тяжелыми РЗМ эти моменты упорядочены антипараллельно. С точки зрения указанной модели представляет интерес исследование магнитного состояния соединений Co2, в которых концентрации R¢ и R¢¢ подобраны так, что суммарная намагниченность ионов R¢ и R¢¢ равна (или близка к) нулю.
В данной работе представлены результаты нейтронографических исследований соединений Nd1-xTbxCo2 (0 £ х £ 1). Поликристаллические образцы были получены индукционной плавкой с последующим гомогенизирующим отжигом при 850 ˚С в течение 50 часов. Аттестация образцов проводилась с помощью металлографического, рентгенографического и нейтронографического анализов. Во всех образцах фаза RCo2 является основной, содержание примесных фаз (RCo3 и R2O3) не превышает 5%. Температурные зависимости электросопротивления измерялись четырехконтактным потенциометрическим методом на образцах с размерами около 1 × 1 × 6 мм3. Нейтронографический эксперимент проведен на дифрактометре Д-2, установленном на одном из горизонтальных каналов реактора ИВВ-2М (г. Заречный), с длиной волны нейтронов l = 1.805Ǻ. Результаты расчета нейтронограмм, измеренных при комнатной температуре, позволяют считать, что во всех исследованных нами соединениях Nd1-xTbxCo2 основная фаза имеет кристаллическую структуру типа MgCu2 (пространственная группа Fd3m). Параметр решетки a равномерно уменьшается с увеличением x, что связано с различием ионных радиусов Nd и Tb. Из кривых температурной зависимости электросопротивления для соединений Nd1-xTbxCo2 были получены температуры Кюри TC для каждого сплава.
Результаты анализа нейтронограмм показывают, что охлаждение образцов до 4.2 К сопровождается переходом к ромбоэдрической структуре (пространственная группа R-3m) для составов с х ³ 0.5. Для составов с х £ 0.5 охлаждение до 4.2 К сопровождается переходом к орторомбической структуре (пространственная группа Fddd). На всех нейтронограммах при 4.2 К наблюдаются вклады в рефлексы от магнитного рассеяния. С изменением состава сплавов наиболее заметно изменяется интенсивность рефлекса (111). Параметры кристаллической и магнитной элементарных ячеек совпадают. Магнитная структура соединений Nd1-xTbxCo2 описывается волновым вектором k = 0. Были получены значения намагниченностей редкоземельной mR и кобальтовой mCo подрешеток, приведенные на рис.1 a, b.
Как видно из рис.1, с ростом x величина намагниченности mR вначале уменьшается от ~2.9 mБ практически до нуля при x » 0.22, а затем увеличивается по модулю до ~8.2 mБ при x » 1.0. Такое поведение mR (x) становится понятным, если принять во внимание, что магнитный момент иона Tb примерно в три раза больше, чем момент иона Nd, и то, что в соответствии с моделью антиферромагнитного упорядоче-ния моментов ионов R¢ и R² в кубических интерметаллидах типа R¢1-xR²xM2 [1] следует ожидать антипараллельного упорядочения полных моментов ионов Nd и Tb в интерметаллиде Nd1-xTbxCo2. С ростом концентрации x увеличивается и намагниченность mCo (см. Рис.1b), что согласуется с представлениями о метамагнитной природе зонной подсистемы. Как известно, в случае соединений типа RCo2 поведение зонной метамагнитной подсистемы может быть описано соотношением [1] mCo = (gJ-1) JRIR-Co, где gJ - фактор Ланде, JR - полный момент иона R, IR-Co - параметр R-Co - обменного взаимодействия. В случае соединений Nd1-xTbxCo2 с ростом x величина (gJ-1) JR увеличивается, (так как спин тербия больше спина неодима), а, следовательно, будет увеличиваться и намагниченность подрешетки Co.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода