Замена платежей и их консолидация
Задание 9
Под какую процентную ставку необходимо поместить в банк 750 грн, чтобы через 3 года при условии ежегодного компаундирования иметь на счету 1000 грн?
Решение.
Наращенная сумма определяется по формуле:
(1)
где FV – будущая стоимость инвестированного капитала, грн.;
PV –стоимость инвестирован
ного капитала, грн.;
r – процентная ставка;
n – период начисления, год;
r = = 0,10
Таким образом, необходимо поместить в банк 750 грн на 3 года при условии ежегодного компаундирования под 10%, чтобы иметь на счету 1000 грн по окончанию срока.
Задание 19
Предприятие продало товар на условиях потребительского кредита с оформлением простого векселя. Номинальная стоимость векселя 150 тыс. грн. срок вескеля – 60 дней, ставка процента за предоставленный кредит – 15 % годовых.
Через 45 дней с момента оформления векселя предприятие решило учесть вексель в банке. Есть две возможности учета векселя:
1. банк «А» предлагает дисконтную ставку 20 %, способ 365/360;
2. банк «Б» предлагает дисконтную ставку 25 %, способ 365/365.
Рассчитать суммы, которые получит предприятие и банк в обоих случаях.
Будущая стоимость векселя на момент его погашения по простой ставке:
Для расчета дисконта используется учетная ставка:
D = FV - PV = FV • n • d = FV • t/T • d ,
где n – продолжительность срока в годах от момента учета до даты выплаты известной суммы в будущем.
Отсюда:
PV = FV - FV • n • d = FV • (1 - n • d),
где (1 - n • d) – дисконтный множитель.
Стоимость векселя на момент его погашения по простой учетной ставке:
РV = 150 (1 – 0,15) = 146,25 тыс. грн
Следовательно, предъявитель векселя получит сумму 146,25 тыс грн., а сумма дисконта в размере 3,75 тыс грн
Рассчитаем стоимость векселя, если предприятие учтет его в банке:
PV2 = PV1 • (1 + n1 • i ) • (1 - n2 • d ),
где PV1 – первоначальная сумма долга;
PV2 – сумма, получаемая при учете обязательства;
n1 – общий срок платежного обязательства;
n2 – срок от момента учета до погашения.
Банк «А»:
150= 147,2945 тыс грн
D =150 – 147,2945 = 2,7055 тыс грн.
Следовательно, сумма, полученная предприятием при учете данного обязательства в банке «А» составит 147294,5 грн, а банк получит 2705,5 грн.
Банк «Б»:
150= 147,3822 тыс грн
D = 150-147,3822 = 2,6178 тыс грн.
Следовательно, сумма, полученная предприятием при учете данного обязательства в банке «Б»составит 147382,2 грн, а банк получит 2617,8 грн.
Задание 29
Рассматриваются три варианта (А, Б, В) размещения средств на депозитном счете банка.
По варианту А начисление процентов предусматривается осуществлять раз в год по ставке 30%, по варианту Б – ежемесячно по ставке 24% годовых, по варианту В – ежеквартально по ставке 28 % годовых.
Необходимо определить эффективную годовую ставку по каждому варианту и на основании этого выбрать наиболее выгодный вариант инвестирования средств.
Решение.
Используем формулу начисления несколько раз в год
где – количество начислений в году, раз.
По варианту А начисление процентов раз в год по ставке 30%:
= ((1+0,3)1 – 1) = 0,3
, по варианту Б – ежемесячно по ставке 24% годовых
= ((1+)12 – 1) = 0,268
по варианту В – ежеквартально по ставке 28 % годовых
= ((1+)4 – 1) = 0,311
По варианту «А» будет начислено 30%, по варианту «Б» – ежемесячно по ставке – эффективная годовая ставка составит 26,8 % годовых, а по варианту «В» – ежеквартально – 31,1% годовых, следовательно, наиболее выгодный вариант инвестирования средств «В», т.к. эффективная годовая ставка и наращенная сумма будут в этом варианте наибольшими.
Задание 39
На взнос в 30 тыс грн ежемесячно начисляются сложные проценты по номинальной годовой процентной ставке 40%. Оценить сумму взноса через 1,5 года с позиции покупательной способности, если ожидаемый темп инфляции 2% в месяц. Какой должна быть величина прибавленной процентной ставки? Как изменится ситуация, если темп инфляции составит 4% в месяц?
Решение.
Наращенная сумма с учетом инфляции определяется по формуле:
J – индекс инфляции:
J = (1+α)m
где α – темп инфляции за месяц, %,
m – длительность финансовой операции, мес.
Определим индекс инфляции, если ожидаемый темп инфляции 2% в месяц:
J = (1+0,02)18 = 1,428
= 37,907 тыс грн
Определим индекс инфляции, если ожидаемый темп инфляции 4% в месяц:
J = (1+0,04)18 = 2,0258
= 26,721 тыс грн
Прибавленная ставка определяется:
, следовательно, rп
rп = = 0,24
rп = = 0,48
Таким образом, сумма взноса размером 30 тыс грн через 1,5 года с позиции покупательной способности при ожидаемом темпе инфляции 2% в месяц составит 37907 грн, а при инфляции составит 4% в месяц – 26721 грн. Величина прибавленной процентной ставки должна составлять в первом случае 24 %, а во втором – 48%. Если темп инфляции вырастет до 4% в месяц, вкладчик потеряет 11186 грн.
Задание 49
Платеж в 6 тыс грн и сроком оплаты через 4 года необходимо заменить с использованием схемы сложных процентов по ставке 15 % годовых платежом со сроком оплаты 3 года.
Решение.
При использовании схемы сложных процентов для нахождения размера платежа используется формула:
Р0 = Р1(1+r)n0-n1
Р0 = 6 (1+0,15)3-4= 6 * 1,15 -1 = 5,217 тыс. грн.
Таким образом платеж в 6 тыс грн и сроком оплаты через 4 года необходимо заменить с использованием схемы сложных процентов по ставке 15 % годовых платежом размером 5,217 тыс. грн. со сроком оплаты 3 года.
Список литературы
1. Ковалев В.В. Финансовый анализ: Управление капиталом. Выбор инвестиций. Анализ отчетности. – М.: Финансы и статистика, 1997. –512 с.
2. Малыхин В.И. Финансовая математика.: Учеб. пос. для вузов. – М.: ЮНИТИ – ДАНА,1999.- 247 с.
Другие рефераты на тему «Финансы, деньги и налоги»:
Поиск рефератов
Последние рефераты раздела
- Оценка и прогнозирование инвестиционного рынка
- Анализ финансового состояния предприятия
- Анализ современного рынка электронных денег в России
- Актуальные проблемы внешнего долга
- Анализ государственных финансов Удмуртской республики 2006-2009 гг.
- Анализ ликвидности баланса и платежеспособности предприятия
- Анализ и распределение финансовых средств