Спектрометрическое сканирование атмосферы и поверхности Земли

Важное значение имеет факт преобладания криптона над ксеноном в марсианской атмосфере (аналогичная ситуация наблюдается в земной атмосфере), тогда как обратное справедливо для состава протопланетной газовой компоненты обычных или карбонатных хондритов. В связи с этим можно предположить, что на Марсе происходил подобный земному процесс преимущественной адсорбции ксенона, выделившегося при дегаза

ции осадочными породами. Возможно, что подобный процесс имел место на Марсе в периоды флювиальной эрозии. Альтернативное (или дополнительное) предположение состоит в том, что ксенон был поглощен реголитом.

Низкая концентрация аргона свидетельствует о необходимости внести поправки в оценки концентрации других летучих компонентов, основанные на предположении о высоком содержании аргона. Однако малое по сравнению с земным отношение концентрации изотопов аргона указывает, по-видимому, на большую сложность процессов дегазации на Марсе, чем это предполагается по аналогии с Землей.

Можно считать, что Марс и Земля имеют, в целом, сходный состав и поэтому продукция газов осуществляется в одинаковых пропорциях, но дегазация и выветривание были на Марсе гораздо менее полными. Значительная часть летучих компонентов могла быть захвачена слоями вечной мерзлоты (Н2О), полярными шапками (Н2О, СО2), химически связана в грунте (нитраты, окислы, карбонаты) или диссипировала. Если принять такую гипотезу, то из нее вытекает, что масса марсианской атмосферы в прошлом не могла превышать современную более, чем в 10 раз, т. е. давление у поверхности не превосходило 100 мбар. Существование огромных количеств «погребенных» СО2 и Н2О допускает, однако, возможность циклических или эпизодических вариаций климата, которые могли обусловить появление флювиальных структур рельефа.[1, 14-17]

Структурные параметры

Измерения на участке входа СА в марсианскую атмосферу позволили получить сведения о вертикальных профилях структурных параметров. Вход СА «Викинг-2» (САВ-2) в атмосферу Марса произошел 3 сентября 1976 г. около 15 ч 49 м по тихоокеанскому дневному времени, что соответствует местному утру. Структура марсианской атмосферы утром на высотах до 100 км, определенная по данным акселерометрических (на высотах более 25 км) и прямых (парашютный спуск) измерений во время входа СА в атмосферу, характеризуется наличием почти изотермического слоя 1,5—4 км вблизи поверхности планеты с вертикальным градиентом температуры не более 1,3 К/км на высотах, превосходящих 2,5 км. Вертикальный градиент температуры в слое 5—19 км ниже адиабатического и равен 1,8 К/км, а в вышележащей толще атмосферы наблюдается волнообразный ход температуры.

Различие по сравнению с данными САВ-1, согласно которым вертикальный градиент температуры составляет 3,7 К/км, обусловлено влиянием суточного хода (данные САВ-1 относятся к послеполуденному времени). Атмосферное давление у поверхности оказалось примерно на 10% выше (7,75 мбар) зарегистрированного в тот же момент времени в точке посадки СА «Викинг-1» (6,98 мбар). Это определяется тем фактом, что САВ-2 совершил посадку в точке, находящейся на уровне, который на 2,7 км ниже отсчетного уровня марсианского эллипсоида (уровня 6,1 мбар поверхности) и примерно на 0,96—1,20 км ниже уровня САВ-1. Плотность воздуха у поверхности равна 0,0180 кг/м3. Полученный вертикальный профиль температуры на высотах до 100 км согласуется (по крайней мере, качественно) с данными, найденными ранее на основе использования модели тепловых приливов.

Для изменения температуры с высотой характерен волнообразный характер при амплитуде волны, возрастающей примерно до 25 К на высоте 90 км. Вертикальные длины волн (расстояния между экстремумами) варьируют в пределах 17—23 км (теоретические расчеты приводят к значениям, равным 22—24 км). По-видимому, подобные волны являются следствием слоистой структуры вертикальных осцилляции и связаны с нагреванием и охлаждением, обусловленными сжатием и расширением (требуемый коэффициент сжатия на высотах меньше 80 км должен варьировать в пределах 0,80—1,26). Последние определяются влиянием суточного хода температуры поверхности планеты.

Как это необходимо для распространения гравитационных волн, атмосфера устойчива к конвекции, за исключением, возможно, некоторых участков планеты. В обеих точках посадки СА температура атмосферы везде существенно выше уровня конденсации углекислого газа, что исключает возможность формирования дымки из сухого льда летом в северном полушарии по крайней мере до 50° с. ш. Следует, таким образом, считать, что наблюдаемый на этих широтах приповерхностный туман состоит из конденсата водяного пара.

По данным масс-спектрометрических измерений плотности углекислого газа во время снижения СА «Викинг-1, -2» (САВ-1 и САВ-2) рассчитаны вертикальные профили температуры на высотах 120—200 км. Расчеты сделаны на основе барометрической формулы с применением итерационной схемы, предусматривающей послойное определение температуры, начиная с уровня верхней границы, где атмосфера первоначально предполагается изотермической в пределах интервала высот, охватываемого первыми двумя точками измерений. Вертикальные профили температуры восстановлены независимо по ионным пикам, соответствующим массовым числам 44, 22 и 12, что позволяет оценить точность определения температуры.

В обоих случаях (САВ-1 и САВ-2) вертикальные профили температуры имеют волнообразную структуру на высотах более 30 км (для сравнения использованы данные, относящиеся к высотам 0—100 км), причем амплитуда волны возрастает с высотой в слое 50—120 км. В нескольких интервалах высот вертикальный градиент температуры близок к адиабатическому. В случае данных САВ-1 волновая структура профиля температуры может быть обусловлена влиянием суточного прилива. Амплитуда волны меньше в районе снижения САВ-2, что, вероятно, связано с более высокой широтой этого района.

Полученные значения температуры термосферы Марса значительно ниже (<200 К), чем найденные ранее по данным измерений УФ свечения атмосферы с АМС «Маринер-6, -7, -9». Это можно объяснить как влиянием расстояния до Солнца (измерения на CAB сделаны в период, когда Марс был близок к апогею при расстоянии около 1,64 а. е., тогда как АМС «Маринер» функционировали при положении планеты, близком к перигелию при расстоянии около 1,43 а. е.), так и различиями потока энергии, переносимого приливами из нижней атмосферы в верхнюю.

Данные САВ-2 обнаруживают неожиданное возрастание температуры выше 170 км, достоверность которого требует тщательной проверки. Сравнение вычисленных по барометрической формуле вертикальных профилей концентрации аргона и азота с измеренными позволило оценить коэффициент турбулентного перемешивания на различных высотах, варьирующий от 2,1—5,0Х 107 см2/с на уровне 100 км до 1,2—4,2— 109 см2/с на высоте 170 км. Модельные расчеты вертикальных профилей концентрации СО, NO и О2 обнаружили хорошее согласие с результатами измерений.

Построена модель марсианской ионосферы, соответствующая данным САВ-2. Анализ рассматриваемых данных привел к выводу, что отношения смеси азота, аргона и кислорода в основной толще атмосферы равны 2,4 · 10-2; 1,5 · 10-2 и 1,6 · 10-3, соответственно. Верхняя атмосфера обогащена окисью углерода и азота по сравнению с нижней, где отношения смеси этих компонент составляют около 8·10-4 и 10-8—10-9.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы