Спектр излучений Вселенной

Мы уже отметили, что экспериментально доказано существование минимальной температуры . В соответствии с законом Вина, длина волны фотонов, формирующих эту температуру, равна .

Из изложенной информации следует, что максимально возможная длина волны фотона близка к

0,05 м. Фотонов со значительно большей длиной волны в Природе не существует.

Экспериментальная часть зависимости в интервале DE (рис. 1) соответствует радиодиапазону. Она получается стандартными методами, но физическую суть этого излучения ещё предстоит уточнять.

Для установления максимально возможной длины волны фотона, соответствующей реликтовому излучению, найдём разность энергий связи электрона атома водорода, соответствующую 108-му и 107-му энергетическим уровням.

Длина волны фотонов с энергией будет равна

Фотоны с такой длиной волны и энергией способны сформировать температуру

.

Величина этой температуры близка к её минимальному значению, полученному в лабораторных условиях . Это означает, что точка L на рис. 1 близка к пределу существующих возможностей измерения максимальной длины волны реликтового излучения.

Таким образом, можно утверждать, что в Природе нет фотонов для формирования температуры , чтобы зафиксировать плотность реликтового излучения при длине его волны более 0,056 м (рис. 1). Мы уже отмечали в прежних публикациях, что уточнение закономерности изменения плотности реликтового излучения с длиной волны более 0,05 м должно быть главной целью будущих экспериментов.

А теперь опишем статистический процесс формирования максимума реликтового излучения. Максимуму плотности реликтового излучения соответствует длина волны излучения, примерно, равная 0,001063 м (рис. 1, точка 3, А). Фотоны с такой длиной волны рождаются не только в момент встречи электрона с протоном, но и при последующих переходах электрона на более низкие энергетические уровни. Например, при переходе электрона со 108 энергетического уровня на 76 он излучит фотон с энергией

Длина волны этого фотона будет близка к длине волны максимума реликтового излучения

Фотон с аналогичной длиной волны излучится при переходе электрона, например, с 98 на 73 энергетический уровень.

При переходе электрона с 70 на 59 энергетический уровень излучится фотон с аналогичной длиной волны.

Приведем ещё один пример. Пусть электрон переходит с 49 на 45 энергетический уровень. Энергия фотона, который он излучит при этом, равна

Длина волны также близка к максимуму реликтового излучения (рис. 1, точка 3, А).

Мы описали статистику формирования закономерности реликтового излучения и его максимума и видим, что форма этого излучения не имеет никаких признаков «замороженности» после так называемой эпохи рекомбинации водорода, которую придумали астрофизики.

Пойдём дальше. Если электрон перейдёт со 105 энергетического уровня на 60 уровень, то он излучит фотон с энергией и длиной волны , что соответствует интервалу между точками 1 и 2 на рис. 1. При переходе электрона с 15 энергетического уровня на 14 он излучит фотон с энергией и длиной волны , что соответствует точке 1 на рис. 1, которая отстоит от соответствующей теоретической точки тонкой кривой на много порядков. Это вызывает серьёзные сомнения в корректности заключения о том, что формула Планка описывает всю форму экспериментальной зависимости реликтового излучения.

Поскольку от 15 до, примерно, 2 энергетического уровня количество уровней значительно меньше количества уровней от 108 до 15, то количество фотонов, излученных при переходе с 15 уровня и ниже будет значительно меньше количества (а значит и их плотность в пространстве) фотонов, излученных при переходе со 108 до 15 энергетического уровня. Это – главная причина существования максимума реликтового излучения (рис. 1, т. А) и уменьшения его интенсивности с уменьшением длины волны излучения. К этому следует добавить, что в момент перехода электрона с 15-го уровня и ниже излучаются фотоны светового диапазона. Например, при переходе электрона с 15-го на 2-ой энергетический уровень излучается фотон с энергией и длиной волны, соответствующей световому диапазону

.

Естественно, что после формирования атомов водорода наступает фаза формирования молекул водорода, которая также должна иметь максимум излучения. Поиск этого максимума – наша следующая задача.

Известно, что атомарный водород переходит в молекулярный в интервале температур . Длины волн фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале

;

.

Таким образом, у нас есть основания полагать, что максимум излучения Вселенной, соответствующий точке С (рис. 1), формируется фотонами, излучаемыми электронами при синтезе молекул водорода.

Однако на этом не заканчиваются процессы фазовых переходов водорода. Его молекулы, удаляясь от звезд, проходят зону последовательного понижения температуры, минимальная величина которой равна Т=2,726 К. Из этого следует, что молекулы водорода проходят зону температур, при которой они сжижаются. Она известна и равна . Поэтому есть основания полагать, что должен существовать ещё один максимум излучения Вселенной, соответствующий этой температуре. Длина волны фотонов, формирующих этот максимум, равна

.

Страница:  1  2  3  4 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы