Планета Венера
Значительно большую высотную протяженность имеет дневная ионосфера. Непостоянный профиль дневной ионосферы Венеры связан с низким положением ионопаузы, что является одной из главных особенностей ионосферы планеты.
Причина заключается в отсутствии у Венеры сколько-нибудь значительного дипольного магнитного момента. Магнитное поле Земли образует магнитосферу, защищающую ее от прямого воздейст
вия солнечного ветра. Положение ударной волны, где газодинамическое давление солнечного ветра становится равным магнитному давлению, для Земли можно считать общеизвестным – на расстоянии 13 радиусов планеты с подсолнечной стороны. Поэтому ионосфера Земли закрыта от солнечного ветра – ионизованной плазмы, движущейся со скоростью около 400 км/сек. Отсутствие магнитного дипольного поля у Венеры приводит к тому, что сама ионосфера действует как препятствие на пути солнечного ветра, образуя ударную волну.
Магнитные «жгуты» являются еще одним источником высокой температуры на планете. «Жгуты» возникают в виде своеобразных магнитно-токовых трубок. Благодаря магнитной гировязкости, «жгуты» сохраняют цельность и ведут себя как своеобразные длинные канаты, толщиной в несколько десятков километров. Под действием магнитного поля ионопаузы и ионного слоя «жгуты» растягиваются за концы и сред ней частью вторгаются в ионосферу, сохраняя свое сильное магнитное поле. Взаимодействие «жгутов» с ионосферой приводит к разогреву электронного компонента. Предполагается, что это — один из основных источников разогрева.
Рис. Схема процессов в ионосфере и ее взаимодействия с солнечным ветром.
Вдоль ионопаузы проходит токовый слой, отделяющий область сильного магнитного поля от ионосферы. При локальном воздействии солнечного ветра на ионопаузе образуется желоб, стенки которого могут замкнуться с образованием токовой трубки, охватывающей магнитное поле. Трубка с протекающим по ее поверхности током далее погружается в ионосферу. В таких же нестабильностях, но выгнутых в сторону переходного слоя, могут образоваться «пузыри» ионосферы, также охваченные током. Такие «пузыри» далее уносятся солнечным ветром. Наряду с этим, солнечным ветром могут захватываться и большие объемы плазмы ионосферы в виде отошедших облаков и вытянутых стримеров.
ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ АТМОСФЕРЫ
Поиск молний в атмосфере планеты
До конца 1978 г. грозовые разряды в атмосфере Земли были уникальным явлением, не известным нигде более на других планетах.
Радиоизлучение Венеры открыто в конце 50-х годов, с началом ее радиоастрономических исследований. Уже в работах Крауса (1956, 1957) предполагалось, что всплески радиошумов от Венеры связаны с молниями в атмосфере планеты. На самом деле радиоизлучение исходит, главным образом, от сильно нагретой поверхности планеты и горячих нижних слоев тропосферы и к электрическим разрядам отношения не имеет. Анализ состава атмосферы, выполнявшийся аппаратами серии «Венера» с 1967 по 1975 г., а позже «Венерой-11—14» и зондами аппарата «Пионер — Венера», привел к проблеме образования некоторых малых газообразных составляющих атмосферы. Можно предположить, что их происхождение связано с электрическими разрядами в атмосфере.
В конце 1978 г. к Венере приблизились космические аппараты «Пионер — Венера», «Венера-11» и «Венера-12», а в начале 1982 г.— «Венера-13» и «Венера-14». Исследования в 1978г. выполнялись с помощью приборов «Гроза» и OEFD, а в 1982 г.— прибором «Гроза-2». Благодаря исследованиям электрической активности Венеры, присутствие частых электрических разрядов в атмосфере Венеры более не вызывает сомнений. Однако выяснение их природы требует дальнейших исследований, так как обстоятельства возникновения разрядов, похоже, связаны с рядом не вполне понятных явлений. Так 21 декабря 1978 г. прибор «Гроза» на «Венере-12», а 25 декабря — на «Венере-11», спускаясь в атмосфере планеты, зарегистрировал множество импульсов электромагнитного поля, по характеру весьма похожих на атмосферики удаленных земных молний.
Почти одновременно поступили сообщения о странных явлениях, которые, возможно, имеют отношение к той же проблеме. На высотах около 12 км на всех зондах аппарата «Пионер — Венера» были повреждены некоторые датчики, установленные независимо и на разных приборах. В качестве вероятной причины назывались электрические разряды.
Связь молний с генерацией отдельных химических компонентов в атмосфере Венеры стала предметом анализа многих работ. Сообщения об экспериментах на «Венерах» и аппарате «Пионер — Венера», стимулировали интерес к проблеме.
Где происходят разряды?
Чтобы понять, как возникают разряды в атмосфере Венеры и каков механизм накопления зарядов, необходимо знать, на какой высоте происходит это явление. Как уже говорилось, радиорефракция свидетельствует в пользу низкорасположенного источника, но пока опираясь на экспериментальные данные, указать определенную высоту источника поля не удается. Предположение о том, что разряды происходят в облачном слое, основано на следующих соображениях. Хорошо известно, что большие пространственные заряды и связанные с ними молнии возникают почти исключительно в грозовых облаках. В некоторых случаях наблюдается накопление зарядов в зимних облаках («зимние молнии»). Известны также молниевые разряды в пылевых бурях и над извергающимися вулканами. Наконец, существует малоисследованное явление образования молний (и, следовательно, присутствия больших зарядов) при безоблачной атмосфере—«гром с ясного неба».
На Земле наибольшие заряды наблюдаются в облаках с частицами сложной структуры, типа гирлянд, и с каплями переохлажденной воды. Напряженность электрического поля велика также для облаков из ледяных кристалликов;
если же облако состоит только из жидких капелек, напряженность оказывается низкой.
В облаках Венеры частицы жидкие и, по-видимому, имеют один и тот же состав, поэтому напряженность поля должна быть небольшой. Кроме того, ряд авторов высказывают сомнения относительно возможности накопления пространственного заряда в среде, содержащей аэрозоль из сильного электролита — серной кислоты.
По существу, доводы в пользу локализации молний в облачном слое этим исчерпываются.
Таким образом:
Источники электромагнитного излучения (разряды) могут находиться значительно ниже облачного слоя, а механизм накопления объемных зарядов может отличаться от земного.
Кроме того в атмосфере Венеры присутствуют многочисленные электрические разряды, наблюдаемые по их электромагнитному излучению. Частота следования импульсов от одного источника достигает двадцати и более в секунду.
ЗАКЛЮЧЕНИЕ
В исследованиях Венеры с космических аппаратов, в период с конца десятилетия 1960-х по середину 1980-х годов радикально изменились наши представления об этой ближайшей к Земле планете. Начиная с «Венеры-4» — первого аппарата, проникшего в 1967 г. в весьма негостеприимную атмосферу планеты, и до наиболее сложных последних аппаратов, непрерывно возрастали сложность задач и проводимых экспериментов.