Организация и проведение актинометрических наблюдений во время солнечного затмения
Непрерывные измерения одной рассеянной радиации может вести один наблюдатель. Если же будет измеряться и суммарная радиация, то потребуется участие второго наблюдателя, в задачу которого будет входить только установка и убирание экрана.
Наблюдения остальных элементов радиационного режима - длинноволновой радиации атмосферы, уходящей от земной поверхности радиации и радиационного баланса - п
редставляют особенный интерес, так как до сих пор эти элементы во время затмений не наблюдались.
Длинноволновая радиация атмосферы меняется во время затмения вследствие понижения температуры нижнего слоя атмосферы. На её величину может оказывать также влияние ослабление или усиление конденсационных процессов, изменение количества водяного пара в воздухе, изменение запылённости и т.д. Таким образом, атмосферная радиация является чувствительным индикатором происходящих в атмосфере процессов, и её измерения могут дать очень интересные результаты.
Уходящая от земной поверхности радиация определяется прежде всего температурой излучающей поверхности деятельного слоя и должна во время затмения уменьшаться вместе с последней. Она зависит также и от свойств самой поверхности. Поэтому при измерениях уходящей радиации приборы следует располагать над поверхностью, наиболее характерной для данного типа ландшафта.
Результативными обобщающими показателями изменений общего потока лучистой энергии во время затмения служат величины приходящей радиации и радиационного баланса. Эти величины могут быть подсчитаны по их составляющим. Величины радиационного баланса могут быть получены и путём непосредственных измерений.
Атмосферная радиация, уходящая радиация и радиационный баланс могут измеряться одним и тем же прибором - эффективным пиранометром, представляющим собой балансомер, установленный над чёрной поверхностью. Этот прибор измеряет так называемую эффективную радиацию, т.е. разность между интенсивностью радиации, падающей извне на термобатарею, и собственным излучением прибора. Это последнее вычисляется по температуре корпуса прибора, которая измеряется при наблюдении. Прибавление к измеренной эффективной радиации величины собственного излучения прибора даёт интенсивность радиации всех длин волн, падающей на термобатарею. Если эффективный пиранометр установлен горизонтально и обращен приёмной поверхностью к небесному своду, то на него будут действовать совместно солнечная, рассеянная и атмосферная радиации. Влияние первой можно исключить, затеняя термобатарею экраном. Рассеянная радиация измеряется обычным пиранометром и исключается из общей радиации путём вычитания.
Таким образом, величина длинноволнового излучения атмосферы получается из наблюдений с эффективным пиранометром, обращенным вверх.
Если повернуть эффективный пиранометр приёмной поверхностью вниз, то аналогичным образом можно измерить интенсивность радиации, отражаемой и излучаемой тем участком земной поверхности, над которым расположен прибор.
Наконец, поворачивая эффективный пиранометр приёмной поверхностью попеременно вверх и вниз и взяв разность измеренных величин, можно определить радиационный баланс поверхности, находящейся под прибором.
Для непрерывных измерений всех трёх перечисленных выше элементов эффективный пиранометр должен быть смонтирован над участком однородной поверхности на поворотном бруске, позволяющем быстро осуществлять переворачивание прибора. Если вместо эффективного пиранометра имеется только балансомер, то более целесообразно превратить его в эффективный пиранометр, вставив балансомер в оправу, которая без особых затруднений может быть изготовлена на месте по указаниям, содержащимся в упомянутом выше "Наставлении по производству актинометрических наблюдений", стр.123-125 (см. примечание на стр.182).
В случае невозможности выбрать открытый участок с однородной поверхностью достаточных размеров, эффективным пиранометром наблюдается только атмосферная радиация, и прибор всё время остаётся обращенным к небесному своду.
При наблюдениях с эффективным пиранометром для последующей обработки наблюдений необходимо непрерывно отмечать температуру прибора и скорость ветра на уровне пиранометра. Для измерения скорости ветра лучше всего использовать ручной анемометр Фусса, отмечая показания счётчика оборотов при каждом отсчёте по гальванометру. Отсчёты температуры могут делаться с пятиминутными промежутками.
Если для наблюдений с эффективным пиранометром имеется отдельный гальванометр, то отсчёты по нему следует производить через каждую минуту, переворачивая пиранометр после каждого отсчёта. Тогда отдельные измерения каждого элемента будут сделаны с двухминутными промежутками. Если прибор не переворачивается, то достаточно делать отсчёты через каждые 2 минуты. При таком порядке измерений необходимо участие двух наблюдателей, один из которых производит отсчёты по гальванометру, а другой находится у приёмника и делает отсчёты температуры прибора и скорости ветра. Этот же наблюдатель переворачивает прибор,
Если для всех измерений имеется только один гальванометр, то поочерёдно производятся отсчёты: прямой радиации (или, при отсутствии актинометра, - суммарной радиации), рассеянной радиации, эффективной радиации "вверх" и эффективной радиации "вниз" - всего четыре отсчёта. При таком порядке измерений от всех наблюдателей требуется чёткая, слаженная и быстрая работа. Если окажется возможным, желательно подготовить одного-двух запасных наблюдателей и предоставить основным наблюдателям возможность хотя бы кратковременного отдыха, так как проведение непрерывных наблюдений во время затмения требует очень напряжённой работы в течение 2-3 часов.
Радиационный баланс обращенной к небу поверхности во время затмения дважды переходит через нуль, становясь из положительного отрицательным в первой половине затмения и совершая обратный переход во второй половине. При обработке наблюдений необходимо установить время этого перехода. Оно должно определяться фазой затмения и высотой Солнца. Выяснение этой зависимости представляет большой интерес с геофизической точки зрения.
В программу актинометрических наблюдений, кроме чисто радиационных измерений, включаются обычно и наблюдения над освещённостью горизонтальной поверхности прямыми лучами Солнца и рассеянным светом атмосферы. Освещённость характеризует интенсивность видимой части потока лучистой энергии (400 - 760 mμ), оцениваемую по её воздействию на человеческий глаз, т.е. по световому ощущению, и выражается в люксах. Измерения освещённости представляют особенный интерес в полосе полного затмения, где имеется возможность исследовать освещённость, создаваемую солнечной короной и заревым кольцом, и выяснить её зависимость от условий облачности, а при безоблачном небе - от состояния атмосферы.
Измерения освещённости могут производиться любым проверенным фотометром или люксметром. Для относительных измерений можно приспособить селеновые фотоэлементы. При этом элемент, предназначенный для измерения освещённости от прямых солнечных лучей, монтируется в металлической или даже картонной трубке, и для понижения его чувствительности (которая в этом случае оказывается избыточной) покрывается нейтральным светофильтром или просто матовым или молочным стеклом, помещённым на надлежащем расстоянии от фотоэлемента. Фотоэлемент, служащий для измерения диффузной освещённости, также покрывается матовым или молочным стеклом и располагается горизонтально. При этом необходимо предусмотреть возможность использования максимальной чувствительности фотоэлемента во время полной фазы.