Ядерное оружие и его поражающее действие
Военная техника и другие наземные объекты в результате воздействия светового излучения могут быть уничтожены или повреждены пожарами. А в приборах ночного видения могут выходить из строя электронно-оптические преобразователи. Световое излучение приводит к возникновению пожаров в лесу и населенных пунктах.
В качестве дополнительных мер защиты от поражающего действия светового излучения реком
ендуется следующее;
использование экранирующих свойств оврагов, местных предметов;
постановка дымовых завес для поглощения энергии светового излучения;
повышение отражательной способности материалов (побелка мелом, покрытие красками светлых тонов);
повышение стойкости к воздействию светового излучения (обмазка глиной, обсыпка грунтом, снегом, пропитка тканей огнестойкими составами);
проведение противопожарных мероприятий (удаление сухой травы и других горючих материалов, вырубка просек и огнезащитных полос);
использование в темное время суток средств защиты глаз от временного ослепления (очков, световых затворов и др.).
Проникающая радиация ядерного взрыва.
Проникающая радиация ядерного взрыва представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва.
Поражающее действие на организм человека оказывают только свободные нейтроны, т.е. те, которые не входят в состав ядер атомов. При ядерном взрыве они образуются в процессе цепной реакции деления ядер урана или плутония (мгновенные нейтроны) и при радиоактивной распаде осколков их деления (запаздывающие нейтроны).
Суммарное время действия основной части нейтронов в районе ядерного взрыва равно примерно одной секунде, а скорость их распространения от зоны ядерного взрыва десятки и сотни тысяч километров в секунду, но меньше, чем скорость света.
Основным источником потока гамма-излучения при ядерном взрыве является реакция деления ядер вещества заряда, радиоактивный распад осколков деления и реакция захвата нейтронов ядрами атомов среды.
Время действия проникающей радиации на наземные объекты зависит от мощности боеприпаса и может составить 15-25 с с момента взрыва.
Радиоактивные осколки деления ядер находятся в начале в светящейся области, а затем в облаке взрыва. Вследствие подъема этого облака, расстояния от него до земной поверхности быстро увеличивается, а суммарная активность осколков деления вследствие их радиоактивного распада снижается. Поэтому происходит быстрое ослабление потока гамма лучей, достигающих земной поверхности и действие гамма-излучения на земные объекты через указанное время (15-25 с) после взрыва практически прекращается.
Гамма лучи и нейтроны, распространяясь в среде, ионизируют ее атомы, что сопровождается расходом энергии гамма квантов и нейтронов. Количество энергии, теряемой гамма квантами и нейтронами на ионизацию единицы массы среды, характеризует ионизирующую способность, а следовательно, и поражающее действие проникающей радиации.
Гамма - и нейтронное излучения, так же как и альфа - и бета-излучения, различаются по своему характеру, однако общим для них является то, что они могут ионизировать атомы той среды, в которой они распространяются.
Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 000 км/с. Альфа-частицей называется ядро гелия, состоящее из двух нейтронов и двух протонов. Каждая альфа-частица несет с собой определенную энергию. Из-за относительно малой скорости и значительного заряда альфа-частицы взаимодействуют с веществом наиболее эффективно, т.е. обладают большой ионизирующей способностью, вследствие чего их проникающая способность незначительна. Лист бумаги полностью задерживает альфа-частицы. Надежной защитой от альфа-частиц при внешнем облучении является одежда человека.
Бета-излучение представляет собой поток бета-частиц. Бета-час-тицей называется излученный электрон или позитрон. Бета-частицы в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света. Их заряд меньше, а скорость больше, чем альфа-частиц. Поэтому бета-частицы обладают меньшей ионизирующей, но большей проникающей способностью, чем альфа-частицы. Одежда человека поглощает до 50% бета-частиц. Следует отметить, что бета-частицы почти полностью поглощаются оконными или автомобильными стеклами и металлическими экранами толщиной в несколько миллиметров.
Поскольку альфа - и бета-излучения обладают малой проникающей, но большой ионизирующей способностью, то наиболее опасно их действие при попадании внутрь организма или непосредственно на кожу (особенно на глаза) веществ их испускающих.
Гамма-излучение представляет собой электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. По своей природе гамма-излучение подобно рентгеновскому, но обладает значительно большей энергией (меньшей длиной волны), испускается отдельными порциями (квантами) и распространяется со скоростью света (300 000 км/с). Гамма-кванты не имеют электрического заряда, поэтому ионизирующая способность гамма-излучения значительно меньше, чем у бета-частиц и тем более у альфа-частиц (в сотни раз меньше, чем у бета - и в десятки тысяч, чем у альфа-частиц). Зато гамма-излучение обладает наибольшей проникающей способностью и является важнейшим фактором поражающего действия радиоактивных излучений.
Нейтронное излучение представляет собой поток нейтронов. Скорость нейтронов может достигать 20 000 км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. Нейтронное излучение оказывает сильное поражающее действие при внешнем облучении.
Сущность ионизации заключается в том, что под воздействием радиоактивных излучений электрически нейтральные в нормальных условиях атомы и молекулы вещества распадаются на пары положительно и отрицательно заряженных частиц-ионов. Ионизация вещества сопровождается изменением его основных физико-химических свойств, в биологической ткани - нарушением ее жизнедеятельности. И то и другое при определенных условиях может нарушить работу отдельных элементов, приборов и систем производственного оборудования, а также вызвать поражение жизненно важных органов, что в конечном итоге повлияет на жизнедеятельность.
Степень ионизации среды проникающей радиацией характеризуется дозой радиации. Различают экспозиционную и поглощенную дозы радиации.
Экспозиционная доза выражает степень ионизации среды через суммарный электрический заряд ионов (каждого знака), образующихся в единице массы вещества в результате радиоактивного облучения. В настоящее время экспозиционную дозу рентгеновского и гамма-излучения принято измерять в рентгенах.
Рентген (Р) - такая доза рентгеновского и гамма излучения, при которой в 1 см3 сухого воздуха при температуре 0°С и давлении 760 мм рт. ст. образуется 2,08 млрд. пар ионов с суммарным зарядом каждого знака в I электрическую единицу электричества
(1Р=2,58×10-4 Кл/кг; I Кл/кг=3880 Р).
Поглощенная доза выражает степень ионизации среды через величину энергии, теряемой излучением в единице массы вещества на его ионизацию. В настоящее время в качестве единиц измерения поглощенной дозы распространения РАД и БЭР.
Другие рефераты на тему «Военное дело и гражданская оборона»:
- Руководство связью в мотострелковом батальоне
- Дегазация вооружения и военной техники
- Рота полка оперативного назначения ВВ МВД России в специальной операции по пресечению массовых беспорядков в населенном пункте
- Анализ и пути оптимизации деятельности членов экипажа ВС в конкретной ситуации в полете
- Зарождение и развитие теории глубокого боя
Поиск рефератов
Последние рефераты раздела
- 120-мм минометные системы
- 220-мм реактивная система залпового огня
- PR-подготовка призыва в вооруженные силы Российской Федерации
- Авиаконструкторы Ильюшин и Новожилов
- Авиационная безопасность
- Анализ эффективности комплексного применения мер помехозащиты для повышения устойчивости функционирования средств связи в условиях радиопротиводействия противника
- Автомат Калашникова