Характеристика основных оболочек Земли
Внутреннее твердое ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра Земли до сих пор остает
ся дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При этом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода[3].
Внешнее ядро также является металлическим (существенно железным), но в отличие от внутреннего ядра металл находится здесь в жидком состоянии и не пропускает поперечные упругие волны. Конвективные течения в металлическом внешнем ядре являются причиной формирования магнитного поля Земли.
Мантия Земли состоит из силикатов: соединений кремния и кислорода с Mg, Fe, Ca. В верхней мантии преобладают перидотиты - горные породы, состоящие преимущественно из двух минералов: оливина (Fe,Mg) 2SiO4 и пироксена (Ca, Na) (Fe,Mg,Al) (Si,Al) 2O6. Эти породы содержат относительно мало (< 45 мас. %) кремнезема (SiO2) и обогащены магнием и железом. Поэтому их называют ультраосновными и ультрамафическими. Выше поверхности Мохоровичича в пределах континентальной земной коры преобладают силикатные магматические породы основного и кислого составов. Основные породы содержат 45-53 мас. % SiO2. Кроме оливина и пироксена в состав основных пород входит Ca-Na полевой шпат - плагиоклаз CaAl2Si2O8 - NaAlSi3O8. Кислые магматические породы предельно обогащены кремнеземом, содержание которого возрастает до 65-75 мас. %. Они состоят из кварца SiO2, плагиоклаза и K-Na полевого шпата (K,Na) AlSi3O8. Наиболее распространенной интрузивной породой основного состава является габбро, а вулканической породой - базальт. Среди кислых интрузивных пород чаще всего встречается гранит, a вулканическим аналогом гранита является риолит[4].
Таким образом, верхняя мантия состоит из ультраосновных и ультрамафических пород, а земная кора образована главным образом основными и кислыми магматическими породами: габбро, гранитами и их вулканическими аналогами, которые по сравнению с перидотитами верхней мантии содержат меньше магния и железа и вместе с тем обогащены кремнеземом, алюминием и щелочными металлами.
Под континентами основные породы сосредоточены в нижней части коры, а кислые породы - в верхней ее части. Под океанами тонкая земная кора почти целиком состоит из габбро и базальтов. Твердо установлено, что основные породы, которые по разным оценкам составляют от 75 до 25% массы континентальной коры и почти всю океаническую кору, были выплавлены из верхней мантии в процессе магматической деятельности. Кислые породы обычно рассматривают как продукт повторного частичного плавления основных пород в пределах континентальной земной коры. Перидотиты из самой верхней части мантии обеднены легкоплавкими компонентами, перемещенными в ходе магматических процессов в земную кору. Особенно "истощена" верхняя мантия под континентами, где возникла наиболее толстая земная кора.
земля оболочка атмосфера биосфера
3. Геотермический режим земли
Геотермический режим мёрзлых толщ - определяется условиями теплообмена на границах мёрзлого массива. Основные формы геотермического режима - периодические колебания температуры (годовые, многолетние, вековые и т.д.), характер которых обусловлен изменением температур на поверхности и потоком тепла из недр Земли. При распространении температурных колебаний от поверхности вглубь пород их период остаётся неизменным, а амплитуда экспоненциально убывает с глубиной. Пропорционально возрастанию глубины экстремальные температуры запаздывают на отрезок времени, называемый сдвигом фаз. При равных амплитудах колебаний температур отношение глубин их затухания пропорционально корню квадратному из отношений периодов[5].
Специфика геотермического режима мёрзлых толщ определяется наличием фазовых переходов "вода-лёд", сопровождаемых выделением или поглощением тепла и изменением теплофизических свойств пород. Затраты тепла на фазовые переходы замедляют продвижение изотермы 0°С, обуславливают тепловую инерцию мёрзлых толщ. В верхней части разреза мёрзлой толщи выделяется слой годовых колебаний температур. В подошве этого слоя температура соответствует среднегодовой температуре за многолетний (5-10 лет) период. Мощность слоя годовых колебаний температур изменяется в среднем от 3-5 до 20-25 м в зависимости от среднегодовой температуры и теплофизических свойств пород.
Температурное поле пород ниже слоя годовых колебаний формируется под воздействием теплового потока из недр Земли и температурных колебаний на поверхности с периодом более 1 года. Влияние на него оказывают геологическое строение, теплофизические характеристики пород и перенос тепла подземными водами, контактирующими с многолетнемёрзлыми толщами.
При деградации многолетнемёрзлых пород наиболее низкая температура отмечается глубже подошвы слоя годовых колебаний, это вызвано повышением среднегодовой температуры. При аградационном развитии температурное поле отражает охлаждение мёрзлой толщи с поверхности, что выражается в увеличении температурного градиента.
Динамика нижней границы мёрзлой толщи зависит от соотношения тепловых потоков в мёрзлой и талой зоне. Их неравенство обусловлено длиннопериодными колебаниями температур на поверхности, которые проникают на глубину, превышающую мощность мёрзлой толщи. От особенностей геотермического режима и его изменений под воздействием горных выработок и других инженерных сооружений существенно зависят инженерно-геологические и гидрогеологические условия разработки месторождений. Изучение геотермического режима и прогноз его изменения проводится в ходе геокриологической съёмки.
Заключение
Индивидуальное лицо планеты, подобно облику живого существа, во многом определяется внутренними факторами, возникающими в ее глубоких недрах. Изучать эти недра очень трудно, так как материалы, из которых состоит Земля, непрозрачны и плотны, поэтому объем прямых данных о веществе глубинных зон весьма ограничен.
Существует много остроумных и интересных методов изучения нашей планеты, но основная информация о ее внутреннем строении получена в результате исследований сейсмических волн, возникающих при землетрясениях и мощных взрывах. Каждый час в различных точках Земли регистрируется около 10 колебаний земной поверхности. При этом возникают сейсмические волны двух типов: продольные и поперечные. В твердом веществе могут распространяться оба типа волн, а вот в жидкостях - только продольные.
Смещения земной поверхности регистрируются сейсмографами, установленными по всему земному шару. Наблюдения скорости, с которой волны проходят сквозь Землю, позволяют геофизикам определить плотность и твердость пород на глубинах, недоступных прямым исследованиям. Сопоставление плотностей, известных по сейсмическим данным и полученным в ходе лабораторных экспериментов с горными породами (где моделируются температура и давление, соответствующие определенной глубине Земли), позволяет сделать вывод о вещественном составе земных недр. Новейшие данные геофизики и эксперименты, связанные с исследованием структурных превращений минералов, позволили смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли.
Другие рефераты на тему «Геология, гидрология и геодезия»:
- Минералогия и петрография кианитсодержащих пород Борисовских сопок
- История поиска путей учета рефракционных искажений в высокоточных инженерно-геодезических измерениях
- Основы геодезии
- Распределение температуры по стволу скважины с целью решения геологических и геолого-промысловых задач
- Инженерная геология
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин