Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых

Рис. 23. Устройство для оборудования нагнетательных скважин:

1 – отражатель; 2 – эксплуатационная колонна; 3 – раствороподающая колонна; 4 – фильтр

В случае выброса газожидкостной смеси последняя, поднимаясь вверх, разбивается об отражательные сетки, что приводит к отделению газа о

т раствора. Газ выходит на поверхность через устьевой оголовок, а раствор поступает обратно в скважину. Установка раствороподающей колонны в нижней части фильтра позволяет предупредить попадание газа внутрь колонны, что способствует также повышению приемистости нагнетательных скважин.

Для нагнетательных скважин, работающих в напорном режиме, применяется оголовок, показанный на рис.24. Оголовок состоит из корпуса патрубка для подачи выщелачивающих растворов и поплавка с запорным органом. В рабочем состоянии поплавок находится в верхней части корпуса и с помощью запорного органа перекрывает отверстие в крышке корпуса. Выщелачивающий раствор под давлением непрерывно нагнетается в скважину, а образовавшиеся газы скапливаются в верхней части оголовка. При давлении газов выше давления растворов поплавок перемещается вниз и временно открывает отверстие для выхода газов.

Рис. 24. Оголовок нагнетательных скважин, работающих в напорном режиме:

1 – поплавок; 2 – корпус; 3 – запорный орган; 4 – фиксаторы; 5 – патрубок; 6 – эксплуатационная колонна

Оголовки для откачных скважин различаются в зависимости от конструкции раствороподъемного оборудования. Обвязка устья скважин при применении в качестве откачных средств эрлифтов показана на рис.25. Для отделения продуктивных растворов от воздуха и механических взвесей (песка) предусматривается установка специальных сепараторов. Сепаратор присоединяется к раствороподъемной трубе и состоит из корпуса (трубы), двух камер – соответственно для ввода пульпы и слива раствора в коллектор. Он должен устанавливаться выше раствороприемного коллектора.

При попадании пульпы в сепаратор воздух, отделяясь, выходит в атмосферу через отверстия, выполненные в крышках камер. Механические взвеси осаждаются на дне корпуса сепаратора. Для лучшего осаждения взвесей при движении пульпы в корпусе сепаратора-предусматривается установка перегородок. Очищенный раствор поступает на слив в коллектор. Механические взвеси периодически удаляются из сепаратора через отверстия, выполненные в нижней части корпуса. Отверстия перекрываются с помощью пробки 8.

Рис. 25. Устройство для оборудования устья откачных скважин ПВ:

1 – корпус; 2 – перегородки; 3 – отверстия для выхода воздуха; 4 – камера для раствора, поступившего из скважины; 5 – камера слива; 6 – патрубок слива; 7 – поплавковый расходомер; 8 – пробка

Для определения количества раствора, поступившего из скважины, применяются поплавковые расходомеры 7, смонтированные в камере слива. Все части сепаратора и расходомер выполнены из полиэтилена.

При откачке растворов с помощью погружных электронасосов на устье скважины устанавливаются раствороотводной патрубок с задвижкой, манометр и опорная плита, которая находится на кондукторе и воспринимает нагрузки от насоса и раствороподъемных труб

9. Основные направления повышения эффективности сооружения геотехнологических скважин

9.1 Расширение призабойной зоны геотехнологических скважин

Расширение призабойной зоны геотехнологических скважин является одним из путей повышения их производительности и снижения стоимости бурения и добычи ПИ.

При ПВ металлов происходит увеличение дебита расширенных скважин, что связано с увеличением площади притока технологических растворов и с разрушением зон кольматации продуктивных пластов.

При определении величины расширения призабойной зоны технологических скважин ПВ необходимо учитывать следующие основные факторы: а) размеры добычного оборудования, опускаемого в скважину (фильтры, эрлифты и др.); б) эффективное разрушение зон интенсивной кольматации продуктивных горизонтов; в) создание гравийных обсыпок необходимой толщины; г) устойчивость кровли над зоной расширения.

При ПВ металлов диаметр зоны расширения определяется толщиной слоя гравийной обсыпки, величина которого оказывает существенное влияние на производительность скважины и срок ее службы.

Наиболее широко применяются следующие три способа расширения призабойной зоны: механический, гидродинамический и комбинированный. Для скважин ПВ предпочтение следует отдать механическому и особенно комбинированному способу, основанному на механическом разрушении горных пород с использованием энергии струи ПЖ.

На эффективность расширения призабойной зоны технологических скважин большое влияние оказывает конструкция расширителя и режим его работы. При сооружении технологических скважин ПВ находят применение расширители механические, показанные на рис. 26. Режущие лопасти расширителя выводятся в рабочее положение посредством поршня, приводимого в движение потоком жидкости, нагнетаемой буровым насосом. Основное достоинство таких расширителей – высокая надежность в работе благодаря незначительному числу подвижных органов. Приведение лопастей расширителя в транспортное положение по окончании расширения производится в процессе подъема бурового инструмента при движении расширителя по стволу скважины.

Рис. 26. Расширитель механический:

1 – режущие лопасти; 2 – втулка; 3 – корпус расширителя; 4 – нажимное устройство; 5 – корпус поршня;

6 – резиновая манжета; 7 – гайка; 8 –переходник

Другой, более эффективной разновидностью механических расширителей, применяемых при сооружении технологических скважин ПВ, являются расширители, показанные на рис. 27. Режущие лопасти расширителя выводятся в рабочее положение с помощью поршня, приводимого в действие потоком жидкости, нагнетаемой буровым насосом и промежуточных тяг. Усиление резания регулируется путем изменения давления, развиваемого буровым насосом. Для проработки ствола скважины, очистки его от шлама нижняя часть расширителя снабжена режущими элементами (лопастями). Испытания расширителей показали их высокую надежность в работе. Диаметр камеры может достигать 300 – 400 мм при первоначальном диаметре скважины 190 мм. Режущие лопасти занимают исходное положение при подъеме бурового инструмента и прекращении подачи жидкости буровым насосом.

Рис. 27. Расширитель механический с промежуточными тягами:

1 – корпус; 2 – поршень; 3 – тяга; 4 – лопасти; 5 – породоразрушающий наконечник

При сооружении технологических скважин ПВ широкое применение находят гидромеханические эксцентриковые расширители, сконструированные на кафедрах «Разведочного бурения» и «Геотехнологии руд» МГРИ (рис. 28). Корпус расширителя представляет собой трубу, а режущим элементом является лопасть 3, армированная твердосплавными резцами. Для повышения эффективности разрушения пород и очистки лопастей от шлама в корпус расширителя вмонтированы насадки 4. Расширитель имеет замковую резьбу для присоединения к бурильным трубам. Рабочая лопасть расширителя приваривается к замку от бурильных труб диаметром 73 мм. На расширитель надевается корпус, который выполняется из трубы, диаметр которой зависит от диаметра расширяемой скважины. Сверху и снизу к корпусу привариваются крышки 6 и 7, а в корпусе делаются отверстия, к которым привариваются гнезда для гидромониторных насадок. Внутренний диаметр гидромониторных насадок обычно принимается равным 9 или 10 мм, что обеспечит получение высокой скорости струи на выходе из насадки.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы