Неразрешимость логики первого порядка
Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита A. Управляющее устройство работает согласно командам, которые имеют следующий вид
qi aj → ap X qk
Запись означает следующее: если управляющее устройство находится в состоянии qi, а в обозреваемой ячейке записана буква aj, то (1) в ячейку вместо aj записывается ap,
(2) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если Х= П, или к обозрению следующей левой ячейки, если Х= Л, или же продолжает обозревать ту же ячейку ленты, если Х= С, (3) управляющее устройство переходит в состояние qk.
Поскольку работа машины, по условию, полностью определяется ее состоянием q, в данный момент и содержимым а обозреваемой в этот момент ячейки, то для каждой возможной конфигурации qi aj имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Поэтому программа машины Тьюринга с внешним алфавитом A={a0, a1, …, an} и внутренним Q={q1, q2,…, qm} содержит не более m (n+ 1) команд.
Словом в алфавите А или в алфавите Q, или в алфавите A Q называется любая последовательность букв соответствующего алфавита. Под k-ой конфигурацией будем понимать изображение ленты машины с информацией, сложившейся на ней к началу k-того шага (или слово в алфавите А, записанное на ленту к началу k-того шага), с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина. Имеют смысл лишь конечные конфигурации, т.е. такие, в которых все ячейки ленты, за исключением, быть может, конечного числа, пусты. Конфигурация называется заключительной, если состояние, в котором при этом находится машина, заключительное.
Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация.
Будем говорить, что непустое слово б в алфавите А\ {а0} = {a1, …, an} воспринимается машиной в стандартном положении, если оно записано в последовательных ячейках ленты, все другие ячейки пусты, и машина обозревает крайнюю слева или крайнюю справа ячейку из тех, в которых записано слово б. Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q1 (соответственно в состоянии остановки q0).
Если обработка слова б переводит машину Тьюринга в заключительное состояние, то говорят, что она применима к б, в противном случае – не применима к б (машина работает бесконечно)
Рассмотрим пример:
Дана машина Тьюринга с внешним алфавитом А = {0, 1} (здесь 0 – символ пустой ячейки), алфавитом внутренних состояний Q = {q0, q1, q2} и со следующей функциональной схемой (программой):
q1 0 → 1 Л q2;
q1 1 → 0 С q2;
q2 0 → 0 П q0;
q2 1 → 1 С q1;
Данную программу можно записать с помощью таблицы
0 |
1 | |
q1 |
1 Л q2 |
0 С q2 |
q2 |
0 П q0 |
1 С q1 |
Посмотрим, в какое слово переработает эта машина слово 110, исходя из начального положения:
q1
… |
1 |
1 |
0 |
… |
На первом шаге действует команда: q1 0 → 1 Л q2 (управляющее устройство находится в состоянии q1, а в обозреваемой ячейке записана буква 0, в ячейку вместо 0 записывается 1, головка сдвигается влево, управляющее устройство переходит в состояние q2), в результате на машине создается следующая конфигурация:
q2
… |
1 |
1 |
1 |
… |
На втором шаге действует команда: q2 1 → 1С q1 и на машине создается конфигурация:
q1
… |
1 |
1 |
1 |
… |
Третий шаг обусловлен командой: q1 1 → 0 С q2. В результате нее создается конфигурация:
q2
… |
1 |
0 |
1 |
… |
Наконец, после выполнения команды q2 0 → 0 П q0 создается конфигурация
q0
… |
1 |
0 |
1 |
… |
Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки q0.
Таким образом, исходное слово 110 переработано машиной в слово 101.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах