Расчет характеристик и переходных процессов в электрических цепях

Учтя всё это можно составить систему уравнений:

Решение системы уравнений и подстановка данных приводит к значению:

Переходная характеристика после подстановки значений имеет вид: >

или

Её график изображен на рисунке 2.3. Расчетные данные находятся в приложении А.

Рисунок 2.3 – График зависимости переходной характеристики

3. НАХОЖДЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ ЦЕПИ С ИСПОЛЬЗОВАНИЕМ ЕЕ СВЯЗИ С , ПОСТРОЕНИЕ ГРАФИКА

Импульсная характеристика вычисляется с помощью зависимости от по формуле:

(3.1)

(3.2)

В импульсной характеристике отсутствует дельта функция, поскольку .

После подстановки значений:

получим

График импульсной функции изображен на рисунке 3.1. Расчетные данные находятся в приложении А.

Рис.3.1 – График зависимости импульсной функции

4. ОПРЕДЕЛЕНИЕ КОМПЛЕКСНОГО КОЭФФИЦИЕНТА ПЕРЕДАЧИ ЦЕПИ , ПОСТРОЕНИЕ ГРАФИКОВ АЧХ И ФЧХ

Комплексный коэффициент передачи может быть представлен в показательной форме записи:

, (4.1)

где - модуль комплексного коэффициента передачи;

- аргумент комплексного коэффициента передачи.

Модель комплексного коэффициента передачи представляет собой АЧХ цепи, а аргумент - ФЧХ цепи. Его можно найти из соотношения:

Напряжение на резисторе R2 равно напряжению на индуктивности L.

Выходя из этого, можно записать:

Комплексный коэффициент передачи при этом:

Выделим мнимую часть числа и найдём модуль (АЧХ):

Подставим значения в выведенные формулы и получим:

Аргументкомплексного коэффициента передачи (аргумент - ФЧХ цепи):

Графики АЧХ , ФЧХ представлены на рисунках 4.1и 4.2 соответственно

Рисунок 4.1 -АЧХ

Рисунок 4.2 – ФЧХ

5. НАХОЖДЕНИЕПЕРЕДАТОЧНОЙ ФУНКЦИИ И УСТАНОВЛЕНИЕ ЕЕ СВЯЗИ С И

Формально выражения для комплексного коэффициента передачи и передаточной функцией отличаются только переменной дляидля .

Произведём замену:

Подставив значение

получим:

Умножим и поделим, прибавим и отнимем комплексно сопряженные числа:

Сведём по формуле квадратов:

Подставив числовые значения и сделав еще некоторые преобразования получим:

Зная, что

запишем импульсную характеристику:

Зная, что

получим переходную характеристику:

Полученные выражения для исовпадают с определенными в п.2 и п.3.

6. РАСЧЕТ ОТКЛИКА ЦЕПИ НА ПРОИЗВОЛЬНОЕ, ПОСТРОЕНИЕ ГРАФИКА ОТКЛИКА

Опишем входной сигнал (напряжение) с помощью простой функции:

Учитывая то, что вид реакции цепи - iL запишем на каждом временном интервале функцию тока через напряжение:

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы были изучены классический и операторный методы нахождения временных характеристик. Классический метод оказался более прост, так как требовал меньше математических выкладок, для определения и . Временные характеристики, найденные этими двумя методами совпали. Был применен комплексный метод для нахождения частотных характеристик цепи.

Также были приобретены практические навыки применения интегралов наложения для расчета переходных процессов и прохождения простейших сигналов через цепи.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Основы теории цепей: Методические указания к курсовой работе для студентов – заочников специальности 23.01 "Радиотехника"/ Сост. Коваль Ю.А., Праги О.В. – Харьков: ХИРЭ, 1991. – 63 с.

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы