Проектирование высокочастотного генератора синусоидальных сигналов
Важными параметрами являются также крутизна характеристики тока коллектора
при (1.10)
и напряжение среза , определяемое для заданного рабочего напряжения на коллекторе
рисунок 1.3б.
Главную особенность работы транзистора на высоких частотах составляет влияние времени пробега носителей тока. Это время невелико и на сравнительно низких частотах им можно пренебречь, но с повышением частоты влияние это значительно увеличивается. Действие времени проявляется, прежде всего в том, что заряды, инжектированные эмиттером в один и тот же момент времени, приходят к коллектору в разное время. Появляется рассеяние носителей тока, которое приводит к уменьшению коэффициента усиления транзистора по току, тем более сильному, чем выше частота генерируемых колебаний. Инерционность носителей тока приводит также к возникновению между первой гармоникой коллекторного тока и коллекторного напряжения на контуре фазового сдвига φпр, зависящего от времени движения носителей тока
Существенное влияние на работу транзисторного генератора в области высоких частот оказывают емкости эмитерного и коллекторного p – n переходов транзистора. С повышением частоты для поддержания на требуемом уровне коллекторного тока и полезной мощности на выходе генератора необходимо увеличить амплитуду напряжения возбуждения на участке база – эмиттер.
3 Электрический расчет схемы
Порядок расчета LC-генератора на транзисторе. Основными техническими данными для расчета транзисторного LC-генератора являются: выходная мощность, отдаваемая автогенератором в нагрузку, Рвых и частота генерируемых колебаний fр. Порядок расчета транзисторного генератора рассмотрим применительно к схеме, приведенной на рис. 9.2,а.
1.Выбираем тип транзистора. При заданном значении Рвых мощность Рк, которую должен отдать транзистор в контур, составляет
РК =Рвых/ηк, (1.11)
Вт
Где ηк, - КПД контура.
При повышенных требованиях к стабильности частоты автогенератора КПД контура ηк выбирают в пределах 0,1…1,2. В остальных случаях его можно увеличить до 0,5…0,8.
Выбирая транзистор, необходимо исходить из условий
РК max >PK , (1.12)
fmax ≥fp, (1.13)
где РК max –максимально допустимая рассеиваемая мощность коллектора выбранного транзистора; fmax –максимальная частота генерации биполярного транзистора; выбранного типа. Параметры РК max = 0,4Вт. и fmax = 200 МГц. высокочастотных транзисторов приведены в справочнике по полупроводниковым приборам (взяли транзистор КТ 668В, или его аналог BС393)
2. Рассчитываем энергетический режим работы генератора. Выбираем импульс коллекторного тока косинусоидальной формы. Считая, что в критическом режиме угол отсечки тока коллектора θ=90° ,по графикам рис.1.2 находим коэффициенты разложения импульса коллекторного тока α1=0,5; α0=0,318.
Находим усредненное время движения τп носителей тока между p-n переходами транзистора по формуле
τп≈1/2πfmax (1.14)
c
Вычисляем угол пробега носителей тока
φпр=2πfрτп (1.15)
Вычисленное по формуле (1.15) значение φпр выражаем в градусах. При этом учитываем, что при φпр=2π угол φпр=360°. Находим угол отсечки тока эмиттера
θэ=θ-φ°пр (1.16)
;
По графикам рис. 1.2 определяем коэффициенты разложения импульса эмитерного тока α1(Э) и α0(Э)
Напряжение питания можно определить по формуле (1.17) при этом Uk берем в пределах 0,8…1,2 В:
(1.17)
;
Коэффициент использования коллекторного напряжения выбираем из соотношения:
ξ=1-2Рк/Ек2Sкрα1 (1.18)
;
где Sкр – крутизна линии критического режима выбранного транзистора (при отсутствии данного параметра в справочнике значение Sкр определяют графически в семействе идеализированных выходных характеристик транзистора; из справочника возьмем Sкр=0,03).
Определяем основные электрические параметры режима:
амплитуду переменного напряжения на контуре
Uмк=ξ|Ek|; (1.19)
амплитуду первой гармоники коллекторного тока
IK1m=2PK/Umk; (1.20)
;
Постоянную составляющую коллекторного тока
IKпост=α0IK1m/α1 (1.21)
;
максимальное значение импульса тока коллектора
IKи max= IK1m/α1 (1.22)
;
мощность, расходуемую источником тока в цепи коллектора
Р0=IKпост|Ek|; (1.23)
;
мощность, рассеваемую на коллекторе
РК рас=Р0-РК (1.24)
;
причем необходимо, чтобы
РК рас<РK max (1.25)
КПД по цепи коллектора
η=РК/Р0 (1.26)
;
Эквивалентное резонансное сопротивление контура в цепи коллектора
Rрез=Umk/IK1m (1.27)
;
Находим коэффициент передачи тока транзистора в схеме с ОБ на рабочей частоте
h21б(fp)=h21б/ (1.28)
;
Где h21б(fp) – коэффициент передачи тока на низкой частоте; f h21б(fp)-предельная частота коэффициента передачи тока биполярного транзистора выбранного типа.
Для определения параметра h21б (значение которого не всегда приводится в справочниках) может быть использована формула
h21б= h21э/(1+ h21э) (1.29)
;
где h21э-коэффициент передачи тока биполярного транзистора в режиме малого сигнала в схеме с ОЭ.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем