Прибор с зарядовой связью

Для объективной оценки разрешающей способности ФСИ используется частотно-контрастная характеристика (ЧКХ)( MTF(madulation transfer function).), описывающая изменение амплитуды светового сигнала и сдвиг по пространственной фазе на выходе системы (например, на экране телевизионного приемника) при изменении пространственной частоты входного гармонического сигнала. Любое реальное изображение Hиз мо

жет быть разложено в ряд Фурье по пространственным частотам. Так как амплитуды и фазы отдельных гармоник будут искажаться по-разному, то на выходе системы получится искаженное изображение. Поэтому с помощью ЧКХ можно определить искажения, вносимые ФСИ при передаче реального изображения. Частотно-контрастная характеристика определяет передающую систему с точки зрения качественности передачи информации от объекта до наблюдателя. Различные устройства (оптические, фотоэлектронные, электронные, механические и т. д.), вводящие в телевизионную систему, вносят искажения в передаваемую информацию. Частотно-контрастная характеристика и учитывает эти искажения. Аналогией ЧКХ в электронных системах являются амплитудно-частотная и фазочастотная характеристики. Изменение ЧКХ происходит вследствие действия трех факторов: дискретности расположения светочувствительных элементов (изменяющийся в пределах одного элемента световой сигнал представляется усредненным зарядовым пакетом); диффузионного расплывания фотогенерируемых носителей под соседние элементы; потерь зарядов при их переносе.

ЧКХ формирователя сигналов изображений на ПЗС определяется совместным действием всех трех факторов. Поскольку эти факторы являются независимыми, то для получения ЧКХ необходимо перемножить амплитуды и сложить фазы, обусловленные разными эффектами.

Ранее уже отмечалось, что реальное изображение можно разложить в ряд Фурье по пространственным частотам. При передаче через ФСИ гармоники с большей пространственной частотой будут иметь большее затухание по амплитуде и больший фазовый сдвиг, т. е. будут сильнее искажаться по сравнению с низкочастотными. Задаваясь определенным уровнем искажений (по амплитуде и по фазе) и используя ЧКХ, можно определить реальную разрешающую способность ФСИ на ПЗС. При А = 0,2 разрешающая способность оказывается в 2—3 раза меньше предельной Rmax , вычисляемой исходя из размеров ПЗС (4.1), а при А =0,5 — в 3—4 раза меньше. Таким образом, реальная разрешающая способность ФСИ на ПЗС оказывается равной 20—30 линий/мм.

Динамический диапазон, определяемый как диапазон значений освещенности изображений, который может быть передан без искажений с помощью ФСИ, для ПЗС составляет 1000:1. Нижняя граница этого диапазона определяется шумами, а верхняя — насыщением потенциальных ям ПЗС и растеканием зарядов при их переполнении. Если на ФСИ падает сильный световой поток, то за время интегрирования потенциальные ямы ПЗС переполняются. Это приводит к двум нежелательным эффектам: во-первых, после заполнения зарядовый пакет, локализованный в потенциальной яме, остается постоянным независимо от уровня освещенности, во-вторых, избыточные заряды под действием диффузии растекаются в соседние ячейки, искажая хранящуюся в них информацию, В конечном итоге это приводит к расплыванию передаваемого изображения, для устранения которого формируют дополнительные обратносмещенные р-n-переходы, собирающие избыточные носители.

5 Строчные (линейные) ФСИ на ПЗС

Широкое распространение получили две разновидности ФСИ на ПЗС: строчные (линейные), воспринимающие за один период интегрирования линию изображения, и матричные (плоскостные), в которые весь образ записывается сразу.

Некоторые положения по организации ФСИ являются общими для обоих типов устройств. Прежде всего должно быть обеспечено два режима работы устройства: восприятие светового потока изображения и последовательный вывод зарядовых пакетов к выходу. Используются два принципа: временное или пространственное разделение режимов восприятия и сканирования.

При разделении во времени обе функции ФСИ (восприятие и сканирование) выполняются с помощью одних и тех же ПЗС-элементов за счет усложнения схем управления. Во время восприятия светового потока на соответствующих ПЗС (в трехтактной схеме на каждом третьем электроде) устанавливаются потенциалы хранения, обеспечивающие накопление фотогенерируемых носителей. Все остальные электроды находятся при нулевом потенциале. После восприятия оптической информации на электроды подается последовательность тактовых импульсов, обеспечивающая перемещение зарядовых пакетов информации к выходу.

При разделении обеих функций в пространстве формирователь должен включать в себя две области: светочувствительную область, которая воспринимает световой поток и преобразует его в картину распределения зарядов, и защищенную от света область хранения, в которую после интегрирования передается вся картина распределения зарядов. В следующем затем режиме сканирования информация из этой области передается на выход.

В первом методе все элементы используются в качестве светочувствительных ячеек. Использование всей площади кристалла позволяет получить максимальное разрешение. Недостатком этого метода является усложненение электронного обрамления (управляющих схем), некоторое уменьшение интервала времени, отводимого на интегрирование изображения, и влияние засветки, поскольку за время кадра информация должна быть не только воспринята, но и передана на выход.

Во втором методе для получения той же разрешающей способности требуется удвоенное количество элементов. Соответственно должна быть увеличена и площадь кристалла. К достоинствам метода кроме увеличения длительности интегрирования (вся продолжительность кадра) относится и то, что сканирование осуществляется в области, защищенной от света с незначительным искажением информации.

Применимость того или иного метода определяется достижимыми характеристиками ПЗС и, наоборот, требования к параметрам элементов определяются выбранным методом сканирования. Оба принципа — и временное, и пространственное разделение — нашли достаточно широкое распространение.

Перейдем к рассмотрению возможной организации строчных ФСИ (рис.13). В этом устройстве имеется три области: центральная светочувствительная полоска ПЗС, покрытая прозрачным антиотражающим материалом, и две защищенные от света области передачи зарядовых пакетов, расположенные по обе стороны от светочувствительной области и связанные с выходным СР. Электроды центральной области 1 находятся под потенциалом хранения Uхр, обеспечивающим накопление в ПЗС фотогенерируемых зарядов. После восприятия изображения на связывающие электроды 3 поступают импульсы передачи Фх и зарядовые пакеты поочередно сдвигаются в правую и в левую передающие области 2 благодаря соответствующему расположению электродов 3. Затем включаются цепи тактовых импульсов Ф1, Ф2, Ф3 и заряды последовательно перемещаются к двухразрядному СР. Следующий этап — перевод зарядов в выходную схему считывания на МОП-транзисторах, сформированную на том же кристалле, и превращение их в видеосигнал.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы